A robust method based on LOVO functions for
solving least squares problems*

E. V. Castelanif R. Lopes' W. V. L. Shirabayashi'
F. N. C. Sobral ™

November 16, 2020

Abstract

The robust adjustment of nonlinear models to data is considered in this
paper. When data comes from real experiments, it is possible that mea-
surement errors cause the appearance of discrepant values, which should
be ignored when adjusting models to them. This work presents a Low
Order-value Optimization (LOVO) version of the Levenberg-Marquardt
algorithm, which is well suited to deal with outliers in fitting problems.
A general algorithm is presented and convergence to stationary points is
demonstrated. Numerical results show that the algorithm is successfully
able to detect and ignore outliers without too many specific parameters.
Parallel and distributed executions of the algorithm are also possible, al-
lowing the use of larger datasets. Comparison against publicly available
robust algorithms shows that the present approach is able to find better
adjustments in well known statistical models.

AMS: 47N10, 65Y05, 90C26, 93E24
Keywords: Low Order-Value Optimization, Levenberg-Marquardt, Out-
lier Detection, Robust Least Squares

1 Introduction

In this work we are interested in studying the following problem: given a dataset
R ={(ti,yi),i=1,...,r} of points in R™ x R, resulting from some experiment,
we want to find a model ¢ : R™ — R for fitting this dataset free from influence
of possible outliers. In a more precise way, given a model ¢(t) depending on n
parameters (z € R™), that is, ¢(t) = ¢(z,t), we want to find a set P C R with
p elements and parameters T € R™, such that ¢(T,t;) =~ y;, V(t;,y;) € P (in the
least squares sense). The r — p remaining elements in R — P are the possible
outliers.

There are several definitions of what an outlier is. The definition that best
suits the present work concerns to errors in y;, that is, grotesque errors in eval-
uation of some measure for a given and reasonably precise ¢;. This is somewhat
different from the geometric interpretation of outliers, in the sense that the

*This project was supported by Fundagdo Araucdria, proc. number 002/2017 — 47223
TDepartment of Mathematics, State University of Marings, Parana, Brazil
8 Corresponding author, fncsobral@uem.br


https://orcid.org/0000-0001-9718-6486
https://orcid.org/0000-0002-7790-6703
https://orcid.org/0000-0003-4963-0946

point (¢;,y;) is (geometrically) very far from the graph of a function that one
wants to find. Typically in our tests, outliers are present when there are er-
rors resulting from the measurement of some experiment. As a consequence,
their presence may contaminate the obtained model and, therefore, deteriorate
or limit its use. There are several strategies to handle the presence of outliers
in datasets [9, 12 22] 23]. In a more recent approach, as highlighted by [13]
and references therein, techniques based on machine learning are exploited in
the context of deal with a large amount of data, lack of models and categorical
variables.

In order to get a fitting model free from influence of outliers, we use an
approach based on Low Order-Value Optimization (LOVO) [5] which is defined
as follows. Consider R; : R" = R, ¢ = 1,...,r. Given x € R™, we can sort
{R;i(x),i=1,...,r} in ascending order:

Ry (2)(x) S Riy(oy(2) < ... S Ry (2)(x) < -+ < Ry (o)(2), (1)

where i (z) is the ig-th smallest element in that set, for the given value of z.
Given 0 < p < r, the LOVO function is defined by

Sp(x) =Y Riya)(2) (2)
k=1

and the LOVO problem is
min Sy, (). (3)

Essentially, this problem can be seen as a generalization of nonlinear least
squares, as elucidated in [5]. To reiterate this affirmation, we can consider

o(t) = ¢(x,t) as the model selected for fitting, and define R;(z) = %(Fl(:c))Q,

where F;(z) = y; — ¢(z,t;),i = 1,...,7. Thus, we have the particular LOVO
problem

p p
. . . 1
min Sy (z) = min E R, (z)(7) = min E §(Fik(f73) (z))% (4)
k=1 k=1

Each R; is a residual function. Consequently, if we assume p = r the LOVO
problem is the classical least squares problem. When p < r the parameter
Z € R™ that solves defines a model ¢(Z,t) free from the influence of the
worst r — p deviations. Throughout this work, p is also know as the number of
trusted points.

Several applications can be modeled in the LOVO context, as illustrated
in [Bl @, [7, [T6], 18]. LOVO problems originated in the studies of Order Value Op-
timization (OVO) problems [2, 3]. For more details on the relationship between
these problems, see reference [5]. An excellent survey about LOVO problems
and variations is given in [I7]. Although it is well known that LOVO deals with
detection of outliers, there is a limitation: the mandatory definition of the value
p, which is associated to the number of possible outliers. This is the main gap
that this paper intends to fill. We present a new method that combines a voting
schema and an adaptation of the Levenberg-Marquardt algorithm in context of
LOVO problems.

Levenberg-Marquardt algorithms can be viewed as a particular case of trust-
region algorithms, using specific models to solve nonlinear equations. In [4], a



LOVO trust-region algorithm is presented with global and local convergence
properties and an application to protein alignment problems. Second-order
derivatives were needed in the algorithm for the local convergence analysis.
In least-squares problems, as the objective function has a well known structure,
Levenberg-Marquardt algorithms use a linear model for the adjustment function,
instead of a quadratic model for the general nonlinear function. This approach
eliminates the necessity of using second-order information for the model while
still having second-order information about the function to be minimized. More
details of Levenberg-Marquardt methods can be found in [21].

Another approach that also uses first-order information of models to ob-
tain second-order approximation in least-squares functions is the Gauss-Newton
method. Gauss-Newton in the context of LOVO functions for image recognition
was discussed in [I]. The authors presented a LOVO approach to the detection
of lines and circles with fixed radii. Line-search was used for obtaining global
convergence. The main drawbacks of this approach were that near-singularity
of the Gauss-Newton system had to be fixed in a heuristic way and the number
p of trusted points had to be previously estimated and fixed for each problem.
The algorithm was shown to be very efficient against state-of-art algorithms,
when the number of parameters to be estimated started to increase.

In [24], outlier detection techniques are classified in 7 groups for problems of
data streaming: Statistic-based, depth-based, deviation-based, distance-based,
clustering-based, sliding-window-based and autoregression-based. In [26], clas-
sification is divided only between geometric and algebraic algorithms for robust
curve and surface fitting. The approach used in this work is clearly algebraic,
strongly based in the fact that the user knows what kind of model is to be
used. Although models are used, we make no assumption on the distribution
of the points, so we do not fit clearly in any of the types described in [24]. We
also make the assumption that the values ¢; are given exactly, what is called as
fized-regressor model in [21].

This work deals with the robust adjustment of models to data. A new version
of the Levenberg-Marquardt algorithm for LOVO problems is developed, so the
necessity of second-order information of function R; is avoided. In addition,
the number of possible outliers is estimated by a voting schema. The main
difference of the proposed voting schema is that it is based in the values of p
which has, by definition, a discrete domain. In other techniques, such as the
Hough Transform [I4], [T0} 15} 25], continuous intervals of the model’s parameters
are discretized. Also, the increase in the number of parameters to adjust does
not impact the proposed voting system. The main improvements of this work
can be stated as follows

e a Levenberg-Marquardt algorithm with global convergence for LOVO prob-
lems is developed, which avoids the use of second-order information such
as in [4] or heuristic strategies to improve conditioning as in [II;

e a voting schema based on the values of p is developed, whose size does not
increase with the size or discretization of the parameters of the model,
such that the number of trusted points does not have to be previously
estimated as in [IJ;

e extensive numerical results are presented, which show the behavior of the
proposed method and are also freely available for download.



This work is organized as follows. In Section [2| we describe the Levenberg-
Marquardt algorithm in the LOVO context and demonstrate its convergence
properties. In Section [3| the voting schema is discussed, which will make the
LOVO algorithm independent of the choice of p and will be the basis of the
robust fitting. Section [4] is devoted to the discussion of the implementation
details and comparison against other algorithms for robust fitting. Finally, in
Section [5] we draw some conclusions on the presented strategy. Throughout this
paper we use the notation Ry := {z € R | z > 0}.

2 The Levenberg-Marquardt method for LOVO
problems

Following [5], let us start this section by pointing out an alternative definition
of LOVO problems for theoretical purposes. Denoting C = {Cy,...,Cq} the set
of all combinations of the elements {1,2,...,r} taken p at a time, we can define
for each i € {1, ..., ¢} the following functions

file) =) Ri(x) ()

keC;

and
Smin(x) = min{ f;(z),i =1, ..., ¢} (6)

It is simple to note that S,(x) = fmin(z) which is a useful notation in our
context. Moreover, it is possible to note that S, is a continuous function if f;
is a continuous function for all i = 1, ..., g, but, even assuming differentiability
over f;, we cannot guarantee the same for S,. In addition, since Ry(z) =
1
§(Fk($))27k €C;,i=1,...,q we can write
1 2 _ 1 2
filw) = 5 37 Fu@)? = l1Fe (). 7)

kec;

Throughout this work, following , given a set C; € C, Fg,(x) : R® — RP will
always refer to the map that takes x to the p-sized vector composed by the
functions Fj(z) defined by (), for k € C; in any fixed order. Similarly, Je, ()
is defined as the Jacobian of this map. Additionally, we assume the continuous
differentiability for F;, i = 1,...,7.

The goal of this section is to define a version of Levenberg-Marquardt method
(LM) to solve the specific problem , for a given p, as well as a result on global
convergence. The new version will be called by simplicity LM-LOVO. It is well
known that the Levenberg-Marquardt method proposed in [19] is closely related
to trust-region methods and our approach is based on it. Consequently, some
definitions and remarks are necessary.

Definition 2.1. Given = € R™ we define the minimal function set of fpin in x
by
Inin(x) ={i € {1,....q} | frmin(2) = fi(2)}.

In order to define a search direction for LM-LOVO at the current point x;, we
choose an index i € I, (2%) and compute the direction defined by the classical



Levenberg-Marquardt method using f;(x), that is, the search direction dj € R™
is defined as the solution of

. 1 Tk
min my,i(d) = S| Fe, (o) + Je, (k)3 + - dl3, (8)
where v, € Ry is the damping parameter. Equivalently, the direction d can be
obtained by

(Je, (zr) " e, (xx) + yD)d = =V fi(ax), (9)

where V f;(zr) = Je, (x1)T Fe, (x1,) and I € R™ ™ is the identity matrix.
To ensure sufficient decrease in the defined search direction, we can consider
a similar strategy of trust-region methods, which involves monitoring the actual
decrease (given by fi,:n) and the predicted decrease (given by my, ;) at direction

dki
Phi miei(0) —mpi(de)
We formalize the conceptual algorithm LM-LOVO in the Algorithm

A noteworthy property of Levenberg-Marquardt (and also Gauss-Newton)
coupled with the LOVO approach is that, assuming that the exact model was
chosen, the number of trusted points p was correctly identified, i € I, (xg)
and there is no relevant noise in observations y;, j € C;, then the Hessian
of the model, V2my ;(d) = Je,(zx)T Je, (1) + Y] approximates the Hessian
of fi, V2fi(xx) = Je, (xr)" Je,(xx) + X ec, V2Fj(r) Fj(ar), as the algorithm
converges. This occurs because F;(zy) — 0, j € C;, and vy, — 0 (see the
definition of v4 and Theorem [2.6)). This property would not occur if a traditional
Levenberg-Marquardt algorithm is applied to data with outliers.

In what follows, we show that Algorithm [1]is well defined and converges to
stationary points of the LOVO problem. We begin with some basic assump-
tions on the boundedness of the points generated by the algorithm and on the
smoothness of the involved functions.

(10)

Assumption 2.2. The level set
0(370) = {JZ e R" | fmm(x) < fmin(xo)}

is a bounded set of R™ and the functions f;, i = 1,...,q, have Lipschitz con-
tinuous gradients with Lipschitz constants L; > 0 in an open set containing

C(l’o)

The next proposition is classical in the literature of trust-region methods
and ensures decrease of my ;, (.) on the Cauchy direction. It was adapted to the
LOVO context.

Proposition 2.3. Given x € R, v € Ry and iy € {1,...,q}, the Cauchy
step obtained from

t= argmin {my;, (—tV f;, (zr))}
teR

and expressed by d° () = —tV fi, (vx) € R, satisfies

e e O fu )13
e (0) = i (o)) 2 g, T+ 700

for some 6 > 0, independent of k.



Algorithm 1: LM-LOVO — Levenberg-Marquardt for the LOVO prob-
lem.
Input: 29 € R™, 0 < Apin < Ao, € >0, A>1,4€ (0,1) and pE N
Output: x;
Set k + 0;

1 Select i € Iin(zg);
A+ )\k;
2 if |V fi, (2)]l2 < € then
Stop the algorithm, xj is an approximate solution for the LOVO
problem;

8 7k < AV fi (zi) 13
Compute dj, the solution of the linear system @D;
Calculate py;, as described in ([10));

a if p;, < p then

A AN

Go back to the Step

else

L Go to the Step

5 )\k+1 S [max{)\mim)\/X},)\];
Ty1 < Tg + d;
k < k4 1 and go back to the Step ;

Proof. The Cauchy step is explicitly given by

B IV fir () 113
ey, @r)V fir ()13 + velIV fiy ()13

By simple substitution in my;, (defined by (8))), and observing that V f;, (z)) =
Je,, (xr)" Fe, (xr) and ||Je,, (x1)V fu (ze)ll2 < e, (@0)ll2IV fir (z1) |2, it is
not hard to show that

dc(xk) =

1 Vi (=)l3
2 (e, (@)ll5 + )’

and holds if we define 6 € (0,1). O

My (0) — M iy (d°(zx)) >

Since the Cauchy step is obtained by the constant that minimizes the model
My, i, (-) on the direction of the gradient vector, by Proposition Wwe can con-
clude that there exists # > 0 such that

oV fi, 2
My, (0) = my i, (di) > IV fir (@) 12

= 2|l e, (@) I3+ )’ (12)

since dj € R™ from @D is the global minimizer of my, ;,, .
Inspired by [6], we present Lemma that shows that Step [5| is always
executed by Algorithm [Ifif A is chosen big enough.

Lemma 2.4. Let x;, € R™ and iy € Iin(zr) be a vector and an index, re-
spectively, both fized in the Step 1] of the Algorithm[i Then, the Step[3 of the
Algorithm [1] will be executed a finite number of times.



Proof. To achieve this goal, we will show that
lim pgq, > 2.
A—o0
For each M fixed in the Step [1] of the Algorithm [I} we have that

1 — M -1— fmzn(xk) - fmzn(mk + dk)
2 2(mk7ik (O) — Mk,iy, (dk))
~2myp 4, (0) — 2mp g, (di) — frmin(Zk) + frin (2 + di)

= 13
2mi, 0] — e () (1)
_ fmin @k + di) + frmin(@k) — 2my 4, (di)
2(mi, (0) — iy, (di)) '
From Taylor series expansion and the Lipschitz continuity of V f;, (zx)
L;
Fir(wn + di) < fiy (2x) + V fir (20) Tk + = [l ]3- (14)

By equation and the definition of f,,;,, we obtain

L
Fonin (@ +di) < fip(xp +di) < fin(z) + Vi () di +

L3 (15)

Through the expressions @ and (@, we have

1Fe,, (xx) + Je,, (zr)di 3 + illdill5 =
= ||Fe,, (z1)ll3 + 2Fe, (z)" Je,, (xr)di + |1 Je,, (@r)dill5 + i lldill3
= ||Fe,, (zi)l3 + 2Fc, (1) Je,, (a1)dy

+df (Je,, (o) e, (@) + T ) di

(B
BB o, 1) + 2V fi (@) d — ALV £, (a0)
=2f;, (wx) + Vi, (xx) T dy.
(16)
Using , and the definition of my ;, in , we get

| Phin _ Fmin(@r + di) + fi, (%) — | Fe,, (zx) + Je,, (2x)dill3 — vxlldill3
2 2(m,i, (0) — Mk, (di))
@) frmin(zk +di) — fi, (xx) — Vi, (zr)Tdy
2(m,i, (0) — Mg, (d))
Li, |l de i3

4(mpi, (0) — my iy, (di))

(17)
From @ and the definition of v, we note that

IV fir ()l o IV Fur(zi)llz _ 1

dill < - ,
ldellz < ok +v% Vi IV fir (zk)[|2A

(18)

where o1, = omin(Je,, (xk)TJcik (zr)) and opin (B) represents the smallest eigen-
value of B.



Replacing in , we obtain

Ly, Ly,
| Prie o [V fir (1) [13A2 B IV fi, (@) ]33
2 7 A(ma, (0) = mp (de)) — 40V i, (ze)lI3
2(I[Je., (@x)l13 + )
(e, (@) 113 + ) Ly - <||Jcik (ze)ll3 N 1 ) L;,
20|V () 3X T IVl IV Fi ()3 ) 20X
(19)

where the last inequality comes from the definition of v in Algorithm [I] and
assuming that A > 1, which can always be enforced.
Using 7 we conclude that

lim 1— 2Ris <
A—o00 2
or equivalently
lim pg g, > 2,
which proves the result. O

Our studies move toward showing convergence results for Algorithm [} to
stationary points. At this point we should be aware of the fact that LOVO
problems admit two types of stationary condition: weak and strong [4].

Definition 2.5. A point z* is a weakly critical point of when z* is a
stationary point of f; for some i € L, (x*). A point z* is a strongly critical
point of if 2* is a stationary point of f; for all ¢ € I, (2*).

The global convergence to weakly critical points is given by Theorem
This type of convergence is less expensive to verify in practice and therefore
more common to deal with. Convergence to strongly critical points is theo-
retically interesting and can be accomplished by using the concept of J-active
indexes, defined in [5]. The algorithm, for such type of convergence has to be
slightly modified. We provide the new algorithm and all the technical details in

Appendix [A]

Theorem 2.6. Let {x}ren be a sequence generated by Algom'thm by choosing
e =0 and z* a limit point of that sequence. Consider K' = {k | i = i} C N
an infinite subset of indexes for i € {1,...,q} such that limgeir 1, = x* and
assume that Assumption [2.4 holds. Then, we have

Jim, 1V fiCan) 2 = 0

and i € Lyin(x*).

Proof. Clearly, there is an index ¢ chosen an infinite number of times by Algo-
rithm (1} since {1,..., ¢} is a finite set.

Let us suppose by contradiction that, for this index 4, there exist 8 > 0 and
an infinite subset Ky C K’ such that ||V fi(zk)||2 > B, for all k € K.



Using the continuity of the Jacobian J¢, (), we ensure that
e, (1) ll2 < sup {[|Je, ()13} = i, (20)
kekq

for all k € KCy.
By , for A > 1 we obtain

n <||Jc< AT
> = \IVAGli * 9760l ) 203
-2 (5 ) o o

J? 1
TPk 22 (/34 /32)

for all k € 5.
Through expression , we have that Step |5| of Algorithm 1| will certainly

2 .
be executed when A > b = max {1 (24 ;) Ig} since

J? L; J2 1\ L;
p’”—2(54 62>A>2<6“52>9b—1>“’ (22)

for all k € Ky. Therefore, based on Step [4] of Algorithm [1} the value of Ay will
be upper bounded by A\, < M = Ab, for all k € 5.
Then, for all k € K1, we get

fmln(xk) - fmin(zk-l—l)
mi.i(0) — my ;(di) = H
54 fmzn($k) fmln(:rk+1) Z N(mk,z(o) - mk,z(dk))
@ Vi 2
oV fi(zi)l13
2([1Je, ()13 + AV fi(zi)[13)

= fmzn(xk) - fmin(karl) Z

= fmzn(l'k) - fmin(karl) Z Me 2
2 (T2l )
NZEEDIE 23)
= fmm(l'k) fmm(xk-i-l) > ) (”JCL('rk)H% ) )
52 ’
‘ L (1o3°
= fmm(xk) fmzn(xk-i-l) = 2(||JC (l'k)Hz 52>\k)
0 2
= fmm(xk) - fmin(xk-i-l) = 2((]2//4552]\4)
2
< fmin($k+1) - fmin(xk) S 7#35 )

where ¢ = JZ + 32 M.



Expression and the fact that foin(Zp+1) < finin(zg), for all k € K,
contradict the hypothesis that f,;, is bounded from below. We conclude that
there is no such K; and, therefore,

lim, |1V fi(wi)l2 = 0.

To prove the second statement of the theorem, we use the fact that, in
Algorithm [1} i € Inin(xg), for all k, obtaining that

fir(@r) = filwg) < fi(zg), VEEK and V j € {1,...,q}. (24)
By and the continuity of the function f;, for all i € {1,..., ¢}, we have
filz®) < fi(a"), Vjed{l,....q},
which means that i € I,,,;,,(z*), concluding the proof. O

It is not hard to show that, if ¢ € L, (x), then all the previous theoretical
results remain valid if we replace pj ; by

o Jilew) = filek +dy)
Pt i (0) — mpa(dy)

where f; was used instead of f,,;,. The main reason for using gy ; is practical:
when computing f;(xx + di) we can use the same set C; of index of functions
F; that was used when f;(zx) = fmin(2x) was computed. Recall that the
computation of fy,:n(x) requires the computation of all Fj, j =1,...,r, sorting
their values and taking the smallest p functions. On the other hand, since
filek +dg) > frmin(zk + di) and fi(zr) = fmin(zk), we have that

o Jilww) = filek + dy) o fmin(@k) = frin(@p A dy)
Pht = i (0) — M) 1ma(0) — i (dy) Phrts

which means that it might be necessary more executions of Step [3| before con-
dition py ;, > p is satisfied. Each execution of Step |§| involves the solution of a
linear system. If the number r of functions is very large so that sorting is the
bottleneck of the algorithm, the use of pj; can be an interesting alternative.

3 The voting system

The main drawback of Algorithm [I]is the need to know the number p of trusted
points, which is used by S, (or, equivalently, by fiin). It is not usual to
know the exact number of trusted points in any experiment.

To overcome this difficulty, an algorithm for testing different values of p
was created, detailed by Algorithm 2] The main idea of the method is to call
Algorithm [I] for several different values of p and store the obtained solution.
The solutions are then preprocessed, where stationary points that are not global
minimizers of their respective problem are eliminated. This elimination is based
on the fact that, if , and Z,, p < g, are solutions for their respective problems,
then S,(Z,) cannot be greater than S,(z,) if they are both global minimizers.
Therefore, if S,(Z,) > Sq(Z,), then Z, is not a global minimizer and can be

10



safely eliminated. The last steps (Steps and compute the similarity between
each pair of solutions and obtain the most similar ones. Element C), of vector
C stores the number of times that some other solution was considered similar
to Zp, in the sense of a tolerance e. The most similar solution with greatest p
is considered the robust adjustment model for the problem. Algorithm [2]is a
proposal of a voting system, where the solution that was not eliminated by the
preprocessing and occurred with highest frequency (in the similarity sense) is
selected.

Algorithm 2: Voting algorithm for fitting problems

Input: 2o € R, e € Ry and 0 < pin < Dmax
1 Define C' € R® = 0, where s = Pz — Pmin + 1
2 Compute z, € R" by calling Algorithm |1/ for the given p, for all
pe {pmin»pmin + 1a -~-7pmaw}’
Preprocess solutions
Let M, be the similarity between solutions z, and Z,

for P = Pmins .-+ Pmax do
k<0
for ¢ = pmin, - - - Pmas do
L if My, < € then

{31 BN

L E+k+1
Cp+—k

6 T* < ITp, where p= argmax {C,}

d=Pmin;--Pmax

The execution of Algorithm [2| can be easily parallelizable. Each call of
Algorithm [1] with a different value of p can be performed independently at
Step[2] All the convergence results from Section [2] remain valid, so Algorithm 2]
is well defined. All the specific implementation details of the algorithm are
discussed in Section [l

4 Numerical implementation and experiments

In this Section we discuss the implementation details of Algorithms [I] and
From now on, Algorithm [I] will be called LM-LOVO and Algorithm [] will be
called RAFF. Both algorithms were implemented in the Julia language, version
1.0.4 and are available in the official Julia repository. See [§] for information
about the RAFF. j1 package installation and usage.

Algorithm LM-LOVO is a sequential nonlinear programming algorithm, which
means that only the traditional parallelization techniques can be applied. Since
fitting problems have small dimension and a large dataset, the main gains would
be the parallelization of the objective function, not the full algorithm. Matrix
and vector operations are also eligible for parallelization.

Following traditional LOVO implementations [I], the choice of index i) €
Imin(xy) is performed by simply evaluating functions F;(zy), i = 1,...,r, sort-
ing them in ascending order and them dropping the r» — p largest values. Any
sorting algorithm can be used, but we used our implementation of the selection
sort algorithm. This choice is interesting, since the computational cost is linear

11



when the vector is already in ascending order, what is not unusual if LM-LOVO
is converging and ix1 = iy, for example.

The convergence theory needs the sufficient decrease parameter py ;, to be
calculated in order to define step acceptance and the update of the damping
parameter. In practice, LM-LOVO uses the simple decrease test at Step [4]

fmin(-rk + dk) < fmina

which was shown to work well in practice.

The computation of direction dj, is performed by solving the linear system @D
by the Cholesky factorization of matrix Je, (xk)TJcik (zx) + Y. In the case
where Steps[3]and [f] are repeated at the same iteration k, the QR factorization is
more indicated, since it can be reused when the iterate x; remains the same and
only the dumping factor is changed. See [19] for more details about the use of
QR factorizations in the Levenberg-Marquardt algorithm. If there is no interest
in using the QR factorization, then the Cholesky factorization is recommended.

LM-LOVO was carefully implemented, since it is used as a subroutine of RAFF
for solving adjustment problems. A solution T = x; is declared as successful if

IV fir(@)]|2 < & (25)

for some iy € I,in(T), where f;, is given by . The algorithm stops if the
gradient cannot be computed due to numerical errors or if the limit of 400
iterations has been reached. We also set A = 2 as default.

In order to show the behavior of LM-LOVO we solved the problem of adjusting
some data to the one-dimensional logistic model, widely used in statistics

L2

z,t) =x1 + ,
9(@,1) ' + exp(—zst + x4)

where © € R?* represents the parameters of the model and ¢t € R represents
the variable of the model. In order to generate random data for the test, the
procedures detailed in Subsection [4.1] were used. The produced data is dis-
played in Figure where » = 10, p = 9 and the exact solution was z* =
(6000, —5000, —0.2, —3.7). This example has only » — p = 1 outlier.

LM-LOVO was run with its default parameters, using x = (0,0,0,0) as a
starting point and p = 9, indicating that there are 9 points which are trustable
for adjusting the model. The solution found is also shown in Figure [I} given by
Z = (795.356,5749.86,0.161791, 3.02475), as a continuous line, while the “exact”
solution is depicted as a dashed line. We observe that it is not expected the
exact solution z* to be found, since the points were perturbed. The outlier is
correctly identified as the dark/red triangle.

The example in Figure [I] has an outlier that is visually easy to identify, so
the correct number of p = 9 trusted points was used. However, that might not
be the case, specially if there is an automated process that needs to perform
the adjustments, or if the model is multi-dimensional. Algorithm RAFF was
implemented to solve this drawback.

RAFF was also implemented in the Julia language and is the main method
of the RAFF. j1 package [8]. As already mentioned in Section [2| RAFF is easily
parallelizable, so serial and parallel/distributed versions are available, through
the Distributed. j1 package. The algorithm (or the user) defines an interval

12



—— LMLOVO
--- Exact A -~
A Identified outliers -

5000

4000 A

3000

2000

1000

0 5 10 15 20 25 30

Figure 1: Test problem simulating an experiment following the logistic model.
The continuous line represents the adjusted model, while the dashed line is the
“exact” solution. LM-LOVO correctly identifies and ignores the outlier

of values of p to test and calls LM-LOVO to solve each subproblem for a given
value of p. It is known that LOVO problems have many local minimizers,
but we are strongly interested in global ones. Therefore, the traditional multi-
start technique is applied to generate random starting points. The larger the
number of different starting points, the greater is the chance to find global
minimizers. Also, the computational cost is increased. The parallel/distributed
version of RAFF solves this drawback, distributing problems with different values
of p among different cores, processors or even computers.

For the computation of the similarity between solutions z, and z4 in Step
the Euclidean norm of the vector of differences was used

Mpq = ||3_3p - fq||2~

For each p in the interval, the best solution z, obtained among all the runs of
LM-LOVO for that p is stored. In order to avoid considering points in the cases
where LM-LOVO has not converged for some value p, we set M, = M,,; = oo for
all © = pmin, .- ., Pmaz in case of failure.

In the preprocessing phase (Step [3| of RAFF) solutions Z, that clearly are
not minimizers are also eliminated by setting M;, = Mgy = oo for all ¢ =
DPrmins - - - » Pmaz- T detect such points, we check if Sq(Z,) > S,(Z,) for some ¢ <
P < Dmaz- The idea is that the less points are considered in the adjustment, the
smaller the residual should be at the global minimizer. The preprocessing phase
also tries to eliminate solution Z,, . . To do that, the valid solution Z, with
smallest value of S,(Z,), which was not eliminated by the previous strategy, is
chosen, where p < Ppaq. Solution Z,, . is eliminated if S,(Z,) < Sp.... (Tpoas)

13



and the number of observed points (t;,y;) such that |y, — &(Zp, ti)| < |ys —
d(Tp,,..rti)], for i =1,...,r, is greater or equal than r/2.

The last implementation detail of RAFF that needs to be addressed is the
choice of €. Although this value can be provided by the user, we found very
hard to select a number that resulted in a correct adjustment. Very small or
very large values of €, result in the selection of z,, . as the solution, since each
solution will be similar to itself or similar to every solution, and we always select
the largest p in such cases. To solve this issue, the following calculation has been
observed to work well in practice

e = min(M) + avg(M)/(1 + pila,), (26)
where M is the similarity matrix and function avg computes the average simi-
larity by considering only the lower triangular part of M and ignoring oo values
(which represent eliminated solutions). If there is no convergence for any value
of p € [Pmin,Pmaz], then T, .. is returned, regardless if it has successfully
converged or not.

4.1 Experiments for outlier detection and robust fitting

In the first set of tests, we verified the ability and efficiency of RAFF to detect
outliers for well known statistical and mathematical models:

e Linear model: ¢(z,t) = x1t + xo
e Cubic model: ¢(x,t) = x1t3 + xot? + 23t + 14
e Exponential model: ¢(x,t) = x1 + xo exp(—xz3t)

e Logistic model: ¢(x,t) = x1 + Trom(eesitan)
The large number of parameters to be adjusted increases the difficulty of the
problem, since the number of local minima also increases. For these tests, we
followed some ideas described in [20]. For each model, we created 1000 random
generated problems having: 10 points and 1 outlier, 10 points and 2 outliers,
100 points and 1 outlier, and 100 points and 10 outliers. For each combination,
we also tested the effect of the multistart strategy using: 1, 10, 100 and 1000
random starting points.

The procedure for generating each random instance is described as follows.
It is also part of the RAFF. j1 package [8]. Let z* be the exact solution for this
fitting problem. First, r uniformly spaced values for ¢; are selected in the interval
[1,30]. Then, aset O C {1,...,r} with r—p elements values is randomly selected
to be the set of outliers. For all 4 = 1,...,7r a perturbed value is computed,
simulating the results from an experiment. Therefore, we set y; = ¢(a*, ;) + &,
where & ~ N(0,200), if i € O and, otherwise, y; = ¢(z*,t;) + 7s&}&;, where
& ~ N(0,200), & a uniform random number between 1 and 2 and s € {—1,1}
is randomly selected at the beginning of this process (so all outliers are in the
“same side” of the curve). The exact solutions used to generate the instances
are given in Table[l}] The example illustrated in Figure [l was also generated by
this procedure.

The parallel version of RAFF was run with its default parameters on a Intel
Xeon E3-1220 v3 3.10GHz with 4 cores and 16GB of RAM and Linux LUbuntu

14



Model z*

Linear (—200, 1000)
Cubic (0.5, —20, 300, 1000)
Exponential (5000, 4000, 0.2)
Logistic (6000, —5000, —0.2, —3.7)

Table 1: Exact solutions used for each model in order to generate random
instances

18.04 operating system. The obtained results are displayed in Tables [2] and
In those tables, r is the number of points representing the experiments, p is the
number of trusted points, FR is the ratio of problems in which all the outliers
have been found (but other points may be declared as outliers), ER is the ratio
of problems where exactly the r — p outliers have been found, TP is the average
number of correctly identified outliers, FP is the average number of incorrectly
identified outliers, Avg. is the average number of points that have been declared
as outliers by the algorithm and Time is the total CPU time in seconds to
run all the 1000 tests, measured with the @elapsed Julia macro. By default,
Pmin = 0.57 and pnee = r are set in the algorithm. The success criteria
of LM-LOVO was set to ¢ = 10~%, while X was set to 2. For each combination
(Model, r, p) there are 4 rows in Tables [2| and [3] representing different numbers
of multistart trials: 1, 10, 100 and 1000.

Some conclusions can be drawn from Tables Pl and Bl We can see that
RAFF attains its best performance for outlier detection when the number of
correct points is not small, even though the percentage of outliers is high. For
the exponential and logistic models, we also can see clearly the effect of the
multistart strategy in increasing the ratio of identified outliers. In problems with
100 experiments, we observe that in almost all the cases the number of outliers
have been overestimated in average: although the ratio of outlier identification
is high (FR), the ratio of runs where only the exact outliers have been detected
(TR) is very low, being below 20% of the runs. For small test sets, this ratio
increases up to 50%, but difficult models, such as the exponential and logistic,
have very low ratios. However, as we can observe in Figure [2] the shape and
the parameters of the model are clearly free from the influence of outliers. This
observation suggests that maybe the perturbation added to all the values is
causing the algorithm to detect correct points as outliers. The effect of the
number of multi-start runs linearly increases the runtime of the algorithm, but is
able to improve the adjustment, specially for the logistic model. The exponential
model has an awkward behavior, where the ER ratio decreases when the number
of multi-start runs increases, although the ratio of problems where all the outliers
have been detected increases (FR). This might indicate that the tolerance
could be improved. We can also observe that the runtime of the exponential
model is ten times higher than the other models.

When the size of the problem is multiplied by 10 (from 10 points to 100),
we observe that the CPU time is multiplied by 5. This occurs because the time
used by communication in the parallel runs is less important for larger datasets.
Again, the exponential model is an exception.

In a second round of experiments, the same procedure was used to generate

15



40001 4 A
4000 -
2000 -
0 2000 1 A
A A
—2000 A o{ A N A
LA
—4000 - 22000 -
0 10 20 30 0 10 20 30
Linear
12000 A 0
A
10000 - —2000
8000 - —4000 -
6000 - —6000 ~
T T T T _8000 L T T T T
0 10 20 30 0 10 20 30
Exponential Logistic

Figure 2: Selected instances of test problems with » = 100 and p = 90 and
the solutions obtained by RAFF. All the outliers have been correctly identified in
those cases (dark/red triangles). Non-outliers are described by circles, where the
dark/red ones represent points incorrectly classified as outliers by the algorithm

random test problems simulating results from 100 experiments (r = 100), where
a cluster of 10% of the points are outliers (p = 90). The default interval used
for the values of ¢ is [1,30], and the clustered outliers always belong to [5,10].
Selected instances for each type of model are shown in Figure [3] as well as the
solution found by RAFF. Again, 1000 random problems were generated for each
type of model and the multi-start procedure was fixed to 100 starting points
for each problem. The obtained results are shown in Table @] A clustered set
of outliers can strongly affect the model but is also easier to detect, when the
number of outliers is not very large. As we can observe in Table [d] the ratio of
instances where all the outliers have been successfully detected has increased in
all models. The logistic model is the most difficult to fit since, on average, RAFF
detects 17 points as outliers and 9 of them are correctly classified (TP). All the
other models are able to correctly identify 10 outliers, on average, and have a
higher FR ratio.

This set of experiments also shows another benefit of the present approach.
If the user roughly knows the number of points that belong to a given model,
such information can be used in the elimination of random (not necessary Gaus-
sian) noise. The clustered example will be also shown to be an advantage over
traditional robust least-squares algorithms in Subsections and

16



6000

4000
by
2000 A AAD 4000 + ©
A oo ©
o o
o) 20001 =
—2000 A
0 %g
—4000
$ A
0 10 20 30 0 10 20 30
Linear Cubic
10000 A A 0 o)
PN ©)
9 N
aB —2000 -
8000 a®
Q
—4000 ¢
| o
6000 S ° —6000 A %%i
© O A
0 10 20 30 0 10 20 30
Exponential Logistic

Figure 3: Selected instances of test problems containing a clustered set of out-
liers and the solutions obtained by RAFF. All the outliers have been correctly
identified in those cases (dark/red triangles). Non-outliers are described by cir-
cles, where the dark/red ones represent points incorrectly classified as outliers
by the algorithm

4.2 Comparison against robust algorithms

We compared the fitting obtained by RAFF against classical and robust fitting
algorithms provided by the SciPy library version 1.3.1 in Pythorﬂ The robust
fitting algorithm in SciPy consists of using different loss functions in the least
squares formulation. The following loss functions were used: linear (usual least
squares formulation), soft_11 (smooth approximation of the ¢; loss function),
huber and cauchy. The PyCall.jl Julia library was used to load and call
SciPy.

Two more algorithms based on the RANSAC (Random Sample Consen-
sus) [LI], implemented in C++ from the Theia Vision Libraryﬂ version 0.8,
were considered. The first one, called here RANSAC, is the traditional version of
RANSAC and the second one is LMED, based on the work [22], which does not
need the error threshold, the opposite of case of RANSAC (where the threshold is
problem dependent).

All the algorithms from SciPy were run with their default parameters. The
best model among 100 runs was selected as the solution for each algorithm and
the starting point used was randomly generated following the normal distribu-
tion with 4 = 0 and ¢ = 1. Algorithms RANSAC and LMED were run only 10

Thttps://docs.scipy.org/doc/scipy/reference/optimize.html
%http://www.theia-sfm.org/ransac.html

17


https://docs.scipy.org/doc/scipy/reference/optimize.html
http://www.theia-sfm.org/ransac.html

times, due to the higher CPU time used and the good quality of the solution
achieved. RANSAC and LMED were run with a maximum of 1000 iterations, sam-
pling 10% of the data and with the MLE score parameter activated. In order
to adjust models to the sampled data, the Ceres least squares solve1E| version
1.13.0 was used, since Theia has a natural interface to it. All the scripts used in
the tests are available at https://github.com/fsobral/RAFF.jl. Once again,
the parallel version of RAFF was used. The test problems were generated by
the same procedures discussed in Subsection However, only one problem
(instead of 1000) for each configuration (Model, 7, p) was used.

Unlike RAFF, traditional fitting algorithms do not return the possible outliers
of a dataset. Robust algorithms such as least squares using ¢; or Huber loss
functions are able to ignore the effect of outliers, but not to easily detect them.
Therefore, for the tests we selected one instance of each test of type (model, r,
p), where the models and values for r and p are the same used in Tables
The results are displayed in Table [} For each problem p and each algorithm
a, we measured the adjustment error A, , between the model obtained by the
algorithm qbp(x;p,t) and the points that are non-outliers, which is given by

Aap = Yo (@ulrngt) — i),
i€EP
i non-outlier
where ¢, was the model used to adjust problem p. Each row of Table@represents
one problem and contains the relative adjustment error for each algorithm, which

is defined by )
- ap

“p mini{AW} (27)
and the time taken to find the model (in parenthesis). The last row contains
the number of times that each algorithm has found a solution with adjustment
error smaller than 1% of best, smaller than 10% of the best and smaller than
20% of the best adjustment measure found for that algorithm, respectively, in
all the test set. We can observe that RAFF, LMED and soft_11 were the best
algorithms. RAFF was the solver that found the best models in most of the
problems (11/24), followed by LMED (9/24). Its parallel version was consistently
the fastest solver among all. It is important to observe that RAFF was the only
who was easily adapted to run in parallel. However, the parallelism is related
only to the solution of subproblems for different p, not to the multistart runs,
which are run sequentially. Therefore, RAFF solves considerably more problems
per core than the other algorithms in a very competitive CPU time. When
parallelism is turned of, the CPU time is very similar to the traditional least
squares algorithm (1inear). Also, RAFF was the only one that easily outputs the
list of possible outliers without the need of any threshold parameter. Clustered
instance (cubic, 100, 90) and instance (logistic, 10, 9) and the models obtained
by each algorithm are shown in Figure [4

4.3 Experiments for circle detection

The problem of detecting patterns in images is very discussed in the vision
area in Computer Science. LOVO algorithms have also been applied to solv-

3http://ceres-solver.org/

18


https://github.com/fsobral/RAFF.jl

== cauchy RANSAC —#%— soft |1 == cauchy RANSAC —#— soft_|1
—- LMED RAFF huber —- LMED RAFF huber
- linear === linear

Figure 4: Two problems and the models found for each algorithm. On the left,
a cubic model with 100 points and a set of 10 clustered outliers. On the right,
a logistic model with 10 points and only one outlier

ing such problems, as a nonlinear programming alternative to traditional tech-
niques [I]. The drawback, again, is the necessity of providing a reasonable
number of trusted points. RAFF allows the user to provide an interval of pos-
sible trusted points, so the algorithm can efficiently save computational effort
when trying to find patterns in images. Since LOVO problems need a model to
be provided, circle detection is a perfect application to the algorithm.

We followed tests similar to [26], using a circular model

oz, t) = (1 — 21)? + (tg — 29)? — 23

instead of the ellipse model considered in the work. Two test sets were gener-
ated. In the first set » = 100 points were uniformly distributed in the border of
the circle with center (—10, 30) and radius 2. If the point is not an outlier, a ran-
dom perturbation £ ~ A(0,0.1) is added to each one of its ¢; and t2 coordinates.
For outliers, the random noise is given by & ~ A(0,2), as suggested in [26]. In
the second set, r = 300 was considered. The same circumference was used
and p points (non-outliers) were uniformly distributed in the circumference and
slightly perturbed with a noise £ ~ N(0,0.1) as before. The remaining 300 — p
points (the outliers) were randomly distributed in a square whose side was 4
times the radius of the circle, using the uniform distribution. Nine problems
were generated in each test set, with outlier ratio ranging from 10% up to 90%
(i. e. ratio of non-outliers decreasing 90% to 10%).

The same algorithms were compared, the only difference from Subsection
is that the error threshold of RANSAC was reduced to 10 and 100 random starting
points near (1,1,1) were used for all algorithms, except RANSAC and LMED. For
those two algorithms, we kept the number of trials to 10. Also, we tested two
versions of RAFF. In pure RAFF, we decreased the lower bound p,;, from its
default value 0.5r to the value of p, when p falls below the default. In RAFFint,
we used the option of providing upper and lower bounds for the number of
trusted points. If p is the current number of non-outliers in the instance, the
interval given to RAFFint is [p — 0.3r,p + 0.3r] N [0,7]. The measure was
used and the results are shown in Figure

19



We can observe that RAFF, LMED and cauchy achieved the best results. RAFF
found worse models than most of the robust algorithms in the problems of the
first test set, although the results are still very close. Its relative performance
increases as the outlier ratio increases. This can be explained as the strong
attraction that RAFF has to finding a solution similar to traditional least squares
algorithms. In Figure [6] we can see that RAFF has difficulty in finding outliers
that belong to the interior of the circle. To solve this drawback, RAFF also
accepts a lower bound in the number of outliers, rather than only an upper
bound. This ability is useful for large datasets with a lot of noise, as is the
case of the second test set, and allows the detection of inner outliers. This is
represented by RAFFint. We can see in Figure |5| that the performance of both
versions of RAFF is better than traditional robust algorithms in the case of a
large number of outliers.

Normal outliers

159 e
Q /” """" —
s 10 7 L e
< R - e
________ -~ T P
51 Tt ,/’
R :;—_‘_:’/—O—\n\’

% of outliers

----- linear = huber RANSAC RAFF
—— soft_I1 cauchy —»— LMED RAFF int

Uniform outliers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of outliers

Figure 5: Relative adjustment error in the circle detection problem for increasing
outlier ratio and two different types of perturbation: by normal and uniform
distributions

4.4 Comparison against another LOVO approach for model
adjustment

We also compared RAFF against the LOVO Gauss-Newton line-search algorithm
described in [I]. The authors were unable to obtain the codes used in the
paper, thus a Julia implementation was coded following the description of the
algorithm. The algorithm is also available in the RAFF. j1 package as function
gnlslovo.

As previously mentioned, the algorithm in [I] needs a reasonable choice of
parameter p, the number of trusted points. A direct comparison between the

20



Outliers generated by normal distribution

A A Qutliers
A ldent. outliers
A A
A A
A A
A A 20 A
A A A A A A A
A A T
2 ) ) 20
A A
A A
A A
AA A ant aa
AAA A AAA A
A A A A
At most 40% of outliers Outlier ratio between 10% and 60%
Outliers generated by uniform distribution
A A
A pn R Y SN
A A A AA
22 a
& A,
A
A
A
A A
A % A
A A
A% AL
A A
Al A Ba Ay
e A% ala AR
A R4 ABAA
At most 40% of outliers Outlier ratio between 20% and 60%

Figure 6: Difference of outlier detection when upper bounds on the outlier ratio
are provided. The inner outliers are harder to detect, since the error they cause
in the model is smaller

LOVO Gauss-Newton algorithm and Algorithm [1}is not very useful, since both
algorithms are well known to solve nonlinear least-squares problems. Gauss-
Newton algorithms are usually faster and more accurate than the Levenberg-
Marquardt approach, but they might suffer when the matrix used to compute
the descent direction is ill conditioned. Therefore, in this subsection, our aim
is to show that bad choices of p in the LOVO Gauss-Newton algorithm [I] lead
to poorer adjustments and are usually avoided when the voting system used by
RAFF is applied with an inexact interval estimate around p.

The same set of clustered problems from Subsection [£.2 was used, but only
for r = 100 and p = 90. Also, we generated a circle detection problem with
random noise (r = 300 and p = 100), in the same fashion as Subsection
To compare the two approaches, the adjustment error was used. For each

21



model, different values of p were given to the LOVO Gauss-Newton algorithm
and an interval around each p was given to RAFF. The interval was defined
as [max{0, p/r — 0.3}r,min{1,p/r + 0.3}r]. The Gauss-Newton algorithm was
allowed to use 100 random initial points while RAFF was allowed to use 30
random initial points for each p in the interval. The values of p used and the
adjustment error obtained are displayed in Table

We can clearly see the benefits of using the voting system. Even if poor
values of p are provided, RAFF is usually able to find better adjustments than
the Gauss-Newton algorithm with fixed p. The voting system provides a way
to compare the solution for different values of p, which is not a trivial task. We
also observe that LOVO Gauss-Newton is able to find reasonable solutions using
values of p not too close to the true ones. For the logistic model, the results
of Gauss-Newton are worse, since the matrix that appears in the problems is
very ill conditioned. The LOVO Gauss-Newton algorithm could also be used
inside the voting system of RAFF, replacing the LOVO Levenberg-Marquardt
algorithm, but the results would be very similar.

5 Conclusions

In this paper, we have described a LOVO version of the Levenberg-Marquardt
algorithm for solving nonlinear equations, which is specialized to the adjust-
ment of models where the data contains outliers. The theoretical properties of
the algorithm were studied and convergence to strongly and weakly stationary
points has been proved. To overcome the necessity of providing the number
of outliers in the algorithm, a voting system has been proposed. A complete
framework to robust adjustment of data was implemented in the Julia language
and compared to public available and well tested robust fitting algorithms. The
proposed algorithm was shown to be competitive, being able to find better ad-
justed models in the presence of outliers in most of the problems. In the circle
detection problem, the proposed algorithm was also shown to be competitive and
had a good performance even when the outlier ration exceeds 50%. By compar-
ing against a LOVO Gauss-Newton algorithm for model adjustment, the voting
system was shown to be a good strategy when the number of outliers cannot be
estimated beforehand. The implemented algorithm and all the scripts used for
testing and generation of the tests are freely available and constantly updated
at https://github.com/fsobral/RAFF.jl.

Data availability statement

The data that support the findings of this study can be generated by the scripts
provided in https://github.com/fsobral/RAFF. j1, but can also be requested
from the corresponding author upon request.

References

[1] R. Andreani, G. Cesar, R. Cesar-Jr., J. M. Martinez, and P. J. S. Silva. Ef-
ficient curve detection using a Gauss-Newton method with applications in

22


https://github.com/fsobral/RAFF.jl
https://github.com/fsobral/RAFF.jl

agriculture. In Proc. 1st International Workshop on Computer Vision Ap-
plications for Developing Regions in Conjunction with ICCV 2007-CVDR-
ICCV0T, 2007.

R. Andreani, C. Dunder, and J. M. Martinez. Order-Value Optimization:
Formulation and solution by means of a primal cauchy method. Mathemat-
ical Methods of Operations Research (ZOR), 58(3):387-399, 2003.

R. Andreani, C. Dunder, and J. M. Martinez. Nonlinear-programming re-
formulation of the order-value optimization problem. Mathematical Meth-
ods of Operations Research, 61(3):365-384, 2005.

R. Andreani, J. M. Martinez, L.. Martinez, and F. S. Yano. Continuous op-
timization methods for structure alignments. Mathematical Programming,
112(1):93-124, 2008.

R. Andreani, J. M. Martinez, L. Martinez, and F. S. Yano. Low Order-Value
Optimization and applications. Journal of Global Optimization, 43(1):1-22,
20009.

E. H. Bergou, Y. Diouane, and V. Kungurtsev. Convergence and Complex-
ity Analysis of a Levenberg—Marquardt Algorithm for Inverse Problems.
Journal of Optimization Theory and Applications, 185(3):927-944, 2020.

E. G. Birgin, L. F. Bueno, N. Krejié¢, and J. M. Martinez. Low Order-Value
approach for solving VaR-constrained optimization problems. Journal of
Global Optimization, 51(4):715-742, 2011.

E. V. Castelani, R. Lopes, W. Shirabayashi, and F. N. C. Sobral. RAFF jl:
Robust Algebraic Fitting Function in Julia. Journal of Open Source Soft-
ware, 4(39):1385, 2019.

R. D. Cook. Detection of influential observations in linear regression. Tech-
nometrics, 19:15-18, 1977.

R. O. Duda and P. E. Hart. Use of the Hough transformation to detect
lines and curves in pictures. Technical report, Sri International Menlo Park
Ca Artificial Intelligence Center, 1971.

M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. Communications of the ACM, 24(6):381-395, 1981.

F. R. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust Statis-
tics: The Approach Based on Influence Functions. John Wiley & Sons,
New York, NY, USA, 1986.

V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85-126, 2004.

P. V. Hough. Method and means for recognizing complex patterns, Dec. 18
1962. US Patent 3,069,654.

J. Mlingworth and J. Kittler. A survey of the Hough transform. Computer
vision, graphics, and image processing, 44(1):87-116, 1988.

23



[16]

[17]

[18]

[19]

[20]

Z. Jiang, Q. Hu, and X. Zheng. Optimality condition and complexity of
Order-Value Optimization problems and Low Order-Value Optimization
problems. Journal of Global Optimization, 69(2):511-523, 2017.

J. M. Martinez. Generalized order-value optimization. TOP, 20(1):75-98,
2012.

L. Martinez, R. Andreani, and J. M. Martinez. Convergent algorithms for
protein structural alignment. BMC Bioinformatics, 8(1):306, 2007.

J. J. Moré. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105-116. Springer Berlin Heidelberg,
1978.

H. J. Motulsky and E. R. Brown. Detecting outliers when fitting data with
nonlinear regression — a new method based on robust nonlinear regression
and the false discovery rate. BMC Bioinformatics, 7(123), 2006.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2nd edition, 2006.

P. J. Rousseeuw. Least median of squares regression. Journal of the Amer-
ican Statistical Association, 79(388):871-880, 1984.

R. E. Shiffler. Maximum Z scores and outiliers. The American Statistics,
42(1):79-80, 1988.

S. S. Sreevidya. A survey on outlier detection methods. International Jour-
nal of Computer Science and Information Technologies, 5(6):8153—-8156,
2014.

L. Xu, E. Oja, and P. Kultanen. A new curve detection method: random-
ized Hough transform (RHT). Pattern recognition letters, 11(5):331-338,
1990.

J. Yu, H. Zheng, S. R. Kulkarni, and H. Poor. Two-stage outlier elimination
for robust curve and surface fitting. EURASIP Journal on Advances in
Signal Processing, 2010(1), 2010.

24



Type | » | p| FR ER TP FP  Avg. Time (s)

0.858 0.552 0.858 0.349 1.21 2.167

9 0.859 0.554 0.859  0.347 1.21 3.511
0.859 0.554 0.859  0.347 1.21 12.893

10 0.859 0.554 0.859  0.347 1.21 89.285
0.467 0.418 1.112 0.144 1.26 2.344

8 0.467 0.417 1.112  0.145 1.26 3.596
0.467 0.417 1.112  0.145 1.26 13.164

Linear 0.467 0.417 1.112 0.145 1.26 88.684
0.983 0.078 0.983 10.656 11.64 10.297

99 0.982 0.074 0.982 10.655 11.64 42.091
0.982 0.074 0.982 10.677 11.66  316.604

100 0.982 0.075 0.982 10.682 11.66 3082.385
0.916 0.069 9.858  6.768 16.63 9.799

90 0.916 0.070 9.858  6.798 16.66 40.581
0915 0.070 9.854  6.782 16.64  317.722

0.917 0.070 9.860  6.799 16.66 3099.536

0.767 0.572 0.767  0.290 1.06 3.062

9 0.810 0.563 0.810  0.371 1.18 4.111
0.886 0.549 0.886  0.461 1.35 16.370

10 0.886 0.545 0.886  0.465 1.35  126.554
0.150 0.122 0.581 0.243  0.82 2.353

8 0.333 0.282 0.894  0.202 1.10 4.221
0.525 0.462 1.220 0.143 1.36 16.482

Cubic 0.533 0.469 1.232 0.142 1.37  126.088
0.990 0.046 0.990 10.997 11.99 11.485

99 0.991 0.041 0.991 11.351 12.34 51.548
0.992 0.037 0.992 11.788 12.78  420.033

100 0.993 0.036 0.993 11.706 12.70 4123.040
0.945 0.064 9.838 6.941 16.78 11.325

90 0.930 0.063 9.816  7.299 17.11 50.685
0.941 0.063 9.835  7.584 17.42  414.084

0.940 0.060 9.833 7.714 17.55 4042.454

Table 2: Results of RAFF for the detection of outliers for linear and cubic models.
For each kind of problem, a multistart strategy was tested with 1, 10, 100 and
1000 random starting points

25



Type | r | »| FR ER TP FP  Avg.  Time (s)

0.549 0.141 0.549  0.751 1.30 5.627

9 0.698 0.463 0.698 0.354 1.05 17.289
0.777 0.535 0.777 0.338 1.11 136.491

10 0.822 0.581 0.822 0.306 1.13  1215.738
0.213 0.080 0.771  0.459 1.23 4.417

3 0.292 0.264 0921 0.152 1.07 18.053
0.406 0.367 1.138 0.148  1.29 138.862
Exponential 0.516 0.480 1.246 0.092 1.34  1245.882
0.982 0.089 0.982 5444 6.43 47.235

99 0.992 0.046 0.992 10.673 11.66 392.884
0.992 0.047 0.992 10.794 11.79  3521.630

100 0.993 0.044 0.993 11.298 12.29 35418.130
0.532 0.133 8.234 1.921 10.15 47.915

90 0.972 0.060 9.946  7.181 17.13 384.544
0.980 0.064 9.959  7.611 17.57  3389.777

0.980 0.063 9.939 7772 17.71 34121.028

0.009 0.001 0.009 0.116 0.13 2.705

9 0.245 0.156 0.245 0.419  0.66 3.714
0.420 0.309 0.420 0.292 0.71 18.144

10 0.524 0.364 0.524 0.279  0.80 150.310
0.003 0.001 0.091 0.400 0.49 1.914

N 0.032 0.028 0.396 0.369  0.77 3.932
0.065 0.059 0.389 0.28  0.67 21.091

Logistic 0.167 0.143 0.559  0.203  0.76 175.915
0.535 0.006 0.535  7.105  7.64 9.426

99 0.536 0.012 0.536 11.754 12.29 34.022
0.894 0.063 0.894 2.529  3.42 309.246

100 0.929 0.095 0.929 5276  6.21  2678.522
0.002 0.000 4.345 3.295 7.64 9.459

90 0.008 0.001 4.599  5.502 10.10 38.605
0.432 0.001 6.551 4.629 11.18 319.713

0.430 0.099 8.084 2.001 10.09  2774.727

Table 3: Results for RAFF for the detection of outliers for exponential and logistic
models. For each kind of problem, a multistart strategy was tested with 1, 10,
100 and 1000 random starting points

Type FR ER TP FP Avg. Time (s)
Linear 0.949 0.104 9936 6.363 16.30  323.623
Cubic 0.991 0.047 9.991 8.368 18.36 423.634
Exponential 0.987 0.097 9.983 6.775 16.76 3445.482
Logistic 0.745 0.007 8.778 8.382 17.16  326.675

Table 4: Numerical results for problems with p = 100 data points and 10% of
clustered outliers

26



20 60 70 95 99
RAFF  9.3e+02 9.5e+02  9.5e+02 9.2e+02 9.5e+02

linear GN  3.2e404 9.7e4+02  9.7e+02 1.1e+03 1.6e+03
bi RAFF 1.0e+03 9.2e+02 9.7e+02 9.2e+02 9.2e+02
cubie GN  1.1e+03 9.6e+02  9.7¢+02 1.2¢4+03 1.8e403
RAFF  3.9e+03 9.7e4+02  9.7e+02 9.9e4+02 9.4e+02

expon GN  9.1e+03 8.9e+03 4.de+114 7.9e+03 8.0e403
logisti RAFF 1.1le+03 9.7e+02 9.4e+02 1.4e+04 9.5e+02
OBISUC  oN  3.4e+04 3.4e4+04  1.6e+04 3.4e+04 1.4e+04
15 30 120 150 180

virde  BAFF 37¢+00 4.1e+00  7.6e+00 9.1e+00  L3e402

GN 1.7e4+02 4.5e+401 4.1e+00 1.6e+01 4.1e+01

Table 5: Adjustment error for the LOVO Gauss-Newton algorithm [I] (GN) with
fixed p and RAFF using the voting system with an interval around p.

27



squrod Terjur wopuel () J0J UNI qIWT PUR DYSNVY "AS0)RI)S 1IR)SI}NUIL € S
squtod Suryre)s wopuer ()] pur we[qold 1593 YOS JO 90URISUI SUO SUISN SWIJLIOS[R FUI)Y ISNJOI JUSISPIP jsurese uosuredwo)) :9 o[qe],

AR I LT 91 ‘6 Le1 119 ‘¢ 6°Cy GT ‘TT ‘6 9°G‘C
(2s0) 00T (€782 ) €0T (8L°L) OF'T (012 ) ceL (e8°61) 229 (0T'ST) 9%  (L8¥%) 00T | 06 ‘00T ‘O3siso
(ero) 1eer (¢90)0rT  (990)ce9r  (ec01)9vee (6087 ) ¥LL  (82°GT) 00T  (LT°0T)6L°€ 8 ‘0T ‘omsisor
(e8¢) 001  (FT28) ¥TT (99°G) FLT (0601 ) 66% (6221 ) 258  (1€€r) 888 (95€) 661 06 ‘00T ‘uodxo
(620)ccy (820)69¢ (GL0)00T (816 ) 02T (Feor) 18T (Peor) 11% (64721 ) 2€'1 g ‘0T ‘modxo
(e80) 001 (19¢L) 60T (0L2L)TST (1€'9) 201 (zee) ¥z (6£02) 20T (€20)8TT 06 ‘00T ‘o1qno
(#1°0) 1921 (20T ) 6401 (FOT)eL1e  (L8F)6STT  (65FT) 00T  (06TT) 00T  (2L0) 68F 8 ‘0T ‘orqmo
(89°0) €01 (sP°9% ) 20T (99% ) IT'T (01c) 21’1 (0£°6) 001 (922 ) 00T (29°0) 261 06 ‘00T ‘resur
(oro)oo1 (¢¢0)20T  (¥S0)69F (¢0'c ) 001 7Sz ) 8T'1 (eec)8T'T (eg0)or¥ g ‘0T ‘reoury
parosny)
(€60) 10T (2€92) 00T (692) 90T (90'8 ) €g°L (oT'61)€r2  (OT'ST)OT'T (26T ) SLT | 06 ‘00T ‘O3sisof
(1¢0) 10T (922) 00T  (SLL) 20T (¥e'8) ¥9°¢ (78T ) 88’8 (89°L1)¥¢C  (FFF ) I0T | 66 ‘00T ‘O1si3of
(F10)612c (280)S0T  (980) 9568  (86°¢) €19z (8T61)0F6  (FI'ST) 00T  (LTOT ) €C¥ 8 ‘0T ‘onsiso
(66:0) 00T  (060) 222 (680)SF¥e  (8TLT) 16T (SG°02 ) 09°L (8681 ) T1€T  (F2°¢) 89T 6 ‘0T O19S180]
(ceg)zo1  (€9€9) 00T (G86)€6T (ForT ) ore  (81€1) 668  (€5¢1) 668  (S9€)9LT 06 ‘001 ‘uodxo
(61¢)eo1 (zeg)cor (2e¢)¥0T (6601 ) ceT (9821 ) 868  (19€1) 268 (98°€) 00T 66 ‘001 ‘uodxo
(cgo)¥re1 (eL0) 19T  (2L0)aLT (6801 ) 00T (gFar) 2001 (¥P1GT)¥LL  (8T€)¥eT 8 ‘01 ‘wodxo
(ger)orT  (9L0)00T  (920)cevT  (0L0T)89F (692l )88l (92701 )88%cl (F0°S)9T'T 6 ‘01 ‘wodxo
(620) 00T  (S16L) 00T (¥672)GTT (6L°G) 61T (982 )8LT  (65T12) 00T  (€2°0)9L1 06 ‘00T ‘orquo
(180) 801  (F08) ¥0T (008 ) &I'T (009 ) 60°T (0zzz) vz (8012 ) 00T (2L0) COT 66 ‘00T ‘O1qno
(gr0) o001 (00T) 12T (00T )SSFIT (GLF ) 61T (8291 ) ST'T  (08%T)ST'T  (€20) 90F 8 ‘0T ‘orqmo
For)16% (660).LFc (86°0)9zce  (L9F¥) 1LV (r11) 11T (F%'6 ) 00T (180 ) 221 6 ‘0T ‘orqno
(L9°0) 701 (gzL¥) 10T (12%) €T (¢9'1) ¥0'1 (17'8 ) 00'T (17°¢ ) 00°T (09°0) LT 06 ‘00T ‘resur
(e80) 00T (86°€)00T (96€)aaT (0£z) 00T (e7'8 ) 00'T (cze) 001 (09°0) €01 66 ‘001 ‘resur
(zro)oor  (¢60)TOT  (FG0)LTT (L02) ¥TT (682 ) ST'T (6Gz ) 8T'T (09°0 ) 29°€ g ‘0T ‘Tesury
(8r1)eeT  (€90) 00T  (380)STF F91) LET (1T°¢) 90°T (612 ) 90T (09°0) c&'1 6 ‘0T ‘Tesur
R TN OVSNVH £yomneo Isqny TT 3F0s JIesUuTT @ ‘ ;@_oozv

28



A Convergence to strongly critical points

In order to achieve convergence to strongly critical points, it is necessary to
modify Algorithm [I] Given ¢ > 0, we start by defining the é-relaxation of the
set I at a point z, given by Is_mqn(z). This set is known in [5] as the set of
d-active indexes.

Definition A.1. Given z € R™ we define the d-minimal function set of fiin
in x by
Is—min(z) ={i € {1,...,q} | fi(x) < frmin(x) +J}.

Using Definition we define a new model function to be minimized:

my(d) = Zlgglk my.i(d), (28)

where my, ; was defined by and G}, is defined as

Gi, = {i € Ls—min(wk) | |V fi(zi)2 # 0}

Note that, by the definition of my,, it is not hard to minimize my(d). The
minimum will occur in a global minimizer of some my ;. Therefore, to cal-
culate direction dj we first define di, for i € Gy, which is the solution of
(Je,(zi)TJe, (z1)) + yI)d = =V f;(z). Then, dj, is given by di, where

i = argmin{my,;(di)}.
i€Gy

It is interesting to observe that, using this new definition of my, we have that
1 .
m(0) = min §||Fc(xk)||% = fmin(zr). Also, for all i € G, my;(0) > my(0)
k

and my,i(dL) < myi(di). All the steps are given by Algorithm

It is not hard to observe that the Algorithm [3]is also well defined in the sense
of Lemma [2.4] The key argument is that, if the if part in Step 4] is repeated
an infinite number of times, then there is an index 1 € Gy, such that the global
minimizer dj = dik’“ will be chosen an infinite number of times, since I5_in (Tk)
is fixed and finite. We, then, apply Lemma with i = 1, observing that
Pk,iy = Pk-

Now, we want to show that Algorithm [3]is able to generate sequences whose
limit points are strongly critical, according to Definition [2.5] This is given by
Theorem [A2]

Theorem A.2. Let {z}}ren be a sequence generated by Algom'thm@ by choosing
e = 0. Consider K' C N such that khrllg ) = x* and suppose that Assumption
6 !

holds. Then, x* is a strongly critical point of .

Proof. Suppose by contradiction that z* is not a strongly critical point of .
Therefore, there exist an index j € In,(2*), f € R4 and an infinite subset
Kg C K’ such that |V f;(x)||2 > B, for all k € K. Using the continuity of f;,
i € {1,...,q}, we have that limgcx, fi(xzr) = fi(z*), that is, there is K; > 0
such that

0
2 b

|fi(zr) — fi(2™)] < (29)

29



Algorithm 3: LM-LOVO-SC — Levenberg-Marquardt for the LOVO
problem (Strong Critical version).

Input: 0 € R", 0 < A\pin < Ao, €>0,6 >0, A>1,u€ (0,1) and

peN
Output: x
Set k + 0;
1 7, = max ||Vfi(zg)l|3;
I-m,in(xk)
Gr = {i € Is—min(zi) | |V fi(xr)]l2 # 0}

A A
2 if 7, < e then
Stop the algorithm, x, is a strongly critical solution for the LOVO
L problem;

3 Yk < ATk;
Compute di, = dj,, where 1 = arg min, ¢, {m,i(d})};
Calculate pi as

_ fmm(xk) - fmin('rk + dk)

P mx(0) — g (dy,)
4 if py < p then
A A\
Go back to the Step
else

L Go to the Step

5 Met1 € [max{Amin, \/A}, A;
Tht1 Tk + di;
k < k4 1 and go back to the Step ;

for all k > K,k € Kg, where § is a constant used by Algorithm For each
k> Ks = max K;, k € Kg, consider i € Ln(2*) and some £ € Ipin(zk).

1=1,...,q

Equation , used twice, implies that
fiwr) = fmin(wx) = fi(zr) — fo, (vr) = fi(wr) — fi(z™) + fi(2™) — fo, (21)
R = Fo(on) = 5+ Fuin() — fou ()

IA IA
NS N>,

+ fo (l‘*) - fék(xk) <.

We can conclude that, for all k > K5, we have Ly (2*) C Is—min (k).

In particular, j € Gy, for all k > K5,k € Kg.

With similar arguments of Theorem @, there exist M € Ry and Ky € K
such that A\, < M, for all £ > Ky, k € Kg. Since the functions f;, i €
{1,...,q}, have continuous gradients there exist L € Ry and K € Kz such
that 7, = ?Elgx{HVfl(xk)Hg} < L,forall k> K.k € Kg.

k

Defining ¢ = supyex{||lJc, (zx) |3} + LM, by the continuity of fii, and f;

30



there exists K,, € Kg such that

92 02
Fmin (@)= o (e0)] < o and 1y (00) Fin ()] = |y )= 5 (2] < o

for all k > K,,, k € K. Hence, we have that

mk’j(o) - mk(o) = fj(xk) - fmin(mk) = fj(xk) - fmzn(x*) + fmzn(m*) - fmzn(xk)
03
< 2
~ dc
(30)

for all k > K,,,k € Kg. Through expressions and (30)), we obtain, for each
k> K,k € Kg, that

) 032
mi(0) — mi(d) > my;(0) — e (dl) — Tﬂc' (31)
Using and similar arguments of , we obtain, for all k > max{Ks, K1, Kpr, Kin },
k € K3, that

; 30))
mi(dy) < my;(dh) B

fmm(xk) - fmin(-rk-i-l)
mi(0) — my(dp)

m
& frmin(Tk) = fmin(@r41) = p(mg(0) — my(di))

. 2
i (00) = ) - )

(2 01V f;(xx)I3 03
= minew) = Jninlinn) 2 “<2Uij@in@-fvw“&:>

= fmin(mk:) - fmin(xk+1)

(52 (163? (32)
ém“”)ﬁmm“g<mwﬁmﬁmw>%)
LR 1032
:MM%%%WWHﬂEQ@%aﬂkMM@+Mm_4c>
2 2
& fmin(Tk) = fmin(Tr41) > <Mgf — uif )
2
~ fmin(xk+1) - fmzn(xk) S - (Mif ) )

where the second implication follows from observing that Ay L > A7 = % and

IV fj(zk)|l2 > 8. Expression and the property fimin(Tp+1) < fmin(Tk),
for all k& € K’, contradict the hypothesis that f,,;, is bounded from below.
Therefore, we conclude that there is no such K and

lim ||Vf1(l'k)||2 =0, Vi € Imm(x*)

keK’
The continuity of the gradients Vf;, ¢ € {1,..., ¢}, ensures that V f;(*) =0
for all ¢ € Ipyin(2*) and, hence, z* is a strongly critical point. O

31



	Introduction
	The Levenberg-Marquardt method for LOVO problems
	The voting system
	Numerical implementation and experiments
	Experiments for outlier detection and robust fitting
	Comparison against robust algorithms
	Experiments for circle detection
	Comparison against another LOVO approach for model adjustment

	Conclusions
	Convergence to strongly critical points

