Summary
There are four main RAFF structures:
- Main functions: directly called by user;
- Auxiliary functions: used like internal auxiliary functions;
- Random generation: used to generate random sets of data, in order to test
RAFF - Output type: type defined to manipulate output information.
Main functions
RAFF.lmlovo — Function.lmlovo(model::Function [, θ::Vector{Float64} = zeros(n)], data::Array{Float64, 2},
n::Int, p::Int [; kwargs...])
lmlovo(model::Function, gmodel!::Function [, θ::Vector{Float64} = zeros(n)],
data::Array{Float64,2}, n::Int, p::Int [; MAXITER::Int=200,
ε::Float64=10.0^-4])Fit the n-parameter model model to the data given by matrix data. The strategy is based on the LOVO function, which means that only p (0 < p <= rows of data) points are trusted. The Levenberg-Marquardt algorithm is implemented in this version.
Matriz data is the data to be fit. This matrix should be in the form
x11 x12 ... x1N y1
x21 x22 ... x2N y2
:where N is the dimension of the argument of the model (i.e. dimension of x).
If θ is provided, then it is used as the starting point.
The signature of function model should be given by
model(x::Union{Vector{Float64}, SubArray}, θ::Vector{Float64})where x are the variables and θ is a n-dimensional vector of parameters. If the gradient of the model gmodel!
gmodel! = (g::SubArray, x::Union{Vector{Float64}, SubArray},
θ::Vector{Float64})is not provided, then the function ForwardDiff.gradient! is called to compute it. Note that this choice has an impact in the computational performance of the algorithm. In addition, if ForwardDiff.jl is being used, then one MUST remove the signature of vector θ from function model.
The optional arguments are
MAXITER: maximum number of iterationsε: tolerance for the gradient of the function
Returns a RAFFOutput object.
RAFF.gnlslovo — Function.gnlslovo(model, gmodel!, θ, data::Array{T, 2}, n, p;
ε::Number=1.0e-4, MAXITER=400, αls=2.0, dinc=2.0,
MAXLSITER=100) where {T<:Float64}
gnlslovo(model, θ::Vector{Float64}, data::Array{Float64,2},
n::Int, p::Int; kwargs...)
gnlslovo(model, gmodel!, data::Array{Float64,2}, n::Int,
p::Int; kwargs...)
gnlslovo(model, data::Array{Float64,2}, n::Int, p::Int; kwargs...)LOVO Gauss-Newton with line-search described in
R. Andreani, G. Cesar, R. M. Cesar-Jr., J. M. Martínez, and P. J. S. Silva, “Efficient curve detection using a {Gauss-Newton} method with applications in agriculture,” in Proc. 1st International Workshop on Computer Vision Applications for Developing Regions in Conjunction with ICCV 2007-CVDR-ICCV07, 2007.
Fit the n-parameter model model to the data given by matrix data. The strategy is based on the LOVO function, which means that only p (0 < p <= rows of data) points are trusted.
Matriz data is the data to be fit. This matrix should be in the form
x11 x12 ... x1N y1
x21 x22 ... x2N y2
:where N is the dimension of the argument of the model (i.e. dimension of x).
If θ is provided, then it is used as the starting point.
The signature of function model should be given by
model(x::Union{Vector{Float64}, SubArray}, θ::Vector{Float64})where x are the variables and θ is a n-dimensional vector of parameters. If the gradient of the model gmodel!
gmodel! = (g::SubArray, x::Union{Vector{Float64}, SubArray},
θ::Vector{Float64})is not provided, then the function ForwardDiff.gradient! is called to compute it. Note that this choice has an impact in the computational performance of the algorithm. In addition, if ForwardDiff.jl is being used, then one MUST remove the signature of vector θ from function model.
The optional arguments are
MAXITER: maximum number of iterationsε: tolerance for the gradient of the functionαls: number >1 to increase/decrease the parametertin line-searchdinc: number >1 to increase the diagonal of the J^T J matrix in order to escape from singularityMAXLSITER: maximum number of Linear System increases in diagonal before exiting. Also defines the maximum number of Line Search trials to satisfy Armijo (but does not exit in such case)
Returns a RAFFOutput object.
RAFF.raff — Function.raff(model::Function, data::Array{Float64, 2}, n::Int; kwargs...)
raff(model::Function, gmodel!::Function, data::Array{Float64, 2},
n::Int; MAXMS::Int=1, SEEDMS::Int=123456789,
initguess::Vector{Float64}=zeros(Float64, n),
noutliers::Int=-1, ftrusted::Union{Float64,
Tuple{Float64, Float64}}=0.5,
inner_solver::Function=lmlovo, inner_solver_params...)Robust Algebric Fitting Function (RAFF) algorithm. This function uses a voting system to automatically find the number of trusted data points to fit the model.
model: function to fit data. Its signature should be given bymodel(x, θ)where
xis the multidimensional argument andθis then-dimensional vector of parametersgmodel!: gradient of the model function. Its signature should be given bygmodel!(g, x, θ)where
xis the multidimensional argument,θis then-dimensional vector of parameters and the gradient is written ing.data: data to be fit. This matrix should be in the formx11 x12 ... x1N y1 x21 x22 ... x2N y2 :where
Nis the dimension of the argument of the model (i.e. dimension ofx).n: dimension of the parameter vector in the model function
The optional arguments are
MAXMS: number of multistart points to be usedSEEDMS: integer seed for random multistart pointsinitialguess: a good guess for the starting point and for generating random points in the multistart strategynoutliers: integer describing the maximum expected number of outliers. The default is half. Deprecated.ftrusted: float describing the minimum expected percentage of trusted points. The default is half (0.5). Can also be a Tuple of the form(fmin, fmax)percentages of trusted points.inner_solver: solver to be used for the least square problems. By default, useslmlovo. This function has the following mandatory parametersinner_solver(model, gmodel!, θ, data, n, p; inner_solver_params...) = RAFFOutputinner_solver_params...: the remaining parameters will be sent as optional arguments to theinner_solver
Returns a RAFFOutput object with the best parameter found.
RAFF.praff — Function.praff(model::Function, data::Array{Float64, 2}, n::Int; kwargs...)
praff(model::Function, gmodel!::Function, data::Array{Float64, 2},
n::Int; MAXMS::Int=1, SEEDMS::Int=123456789, batches::Int=1,
initguess::Vector{Float64}=zeros(Float64, n),
noutliers::Int=-1, ftrusted::Union{Float64,
Tuple{Float64, Float64}}=0.5,
inner_solver::Function=lmlovo, inner_solver_params...)Multicore distributed version of RAFF. See the description of the raff function for the main (non-optional) arguments. All the communication is performed by channels.
This function uses all available local workers to run RAFF algorithm. Note that this function does not use Tasks, so all the parallelism is based on the Distributed package.
The optional arguments are
MAXMS: number of multistart points to be usedSEEDMS: integer seed for random multistart pointsbatches: size of batches to be send to each workerinitguess: starting point to be used in the multistart procedurenoutliers: integer describing the maximum expected number of outliers. The default is half. Deprecated.ftrusted: float describing the minimum expected percentage of trusted points. The default is half (0.5). Can also be a Tuple of the form(fmin, fmax)percentages of trusted points.inner_solver: solver to be used for the least square problems. By default, useslmlovo. This function has the following mandatory parametersinner_solver(model, gmodel!, θ, data, n, p; inner_solver_params...) = RAFFOutputinner_solver_params...: the remaining parameters will be sent as optional arguments to theinner_solver
Returns a RAFFOutput object containing the solution.
RAFF.set_raff_output_level — Function.RAFF.set_lm_output_level — Function.Auxiliary functions
RAFF.voting_strategy
RAFF.eliminate_local_min!
RAFF.sort_fun!
RAFF.update_best
RAFF.consume_tqueue
RAFF.check_and_close
RAFF.check_ftrusted
RAFF.interval_rand!Random generation
RAFF.generate_test_problems — Function.generate_test_problems(datFilename::String, solFilename::String,
model::Function, modelStr::String, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(n), std::Float64=200.0,
out_times::Float64=7.0)
generate_test_problems(datFilename::String, solFilename::String,
model::Function, modelStr::String, n::Int, np::Int, p::Int,
cluster_interval::Tuple{Float64, Float64};
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(n), std::Float64=200.0,
out_times::Float64=7.0)Generate random data files for testing fitting problems.
datFilenameandsolFilenameare strings with the name of the files for storing the random data and solution, respectively.modelis the model function andmodelStris a string representing this model function, e.g.model = (x, θ) -> θ[1] * x[1] + θ[2] modelStr = "(x, θ) -> θ[1] * x[1] + θ[2]"where vector
θrepresents the parameters (to be found) of the model and vectorxare the variables of the model.nis the number of parametersnpis the number of points to be generated.pis the number of trusted points to be used in the LOVO approach.
If cluster_interval is provided, then generates outliers only in this interval.
Additional parameters:
xMin,xMax: interval for generating points in one dimensional tests Deprecatedx_interval: interval for generating points in one dimensional testsθSol: true solution, used for generating perturbed pointsstd: standard deviationout_times: deviation for outliers will beout_times * std.
RAFF.get_unique_random_points — Function.get_unique_random_points(np::Int, npp::Int)Choose exactly npp unique random points from a set containing np points. This function is similar to rand(vector), but does not allow repetitions.
If npp < np, returns all the np points. Note that this function is not very memory efficient, since the process of selecting unique elements involves creating several temporary vectors.
Return a vector with the selected points.
RAFF.get_unique_random_points! — Function.get_unique_random_points!(v::Vector{Int}, np::Int, npp::Int)Choose exactly npp unique random points from a set containing np points. This function is similar to rand(vector), but does not allow repetitions.
If npp < np, returns all the np points. Note that this function is not very memory efficient, since the process of selecting unique elements involves creating several temporary vectors.
Return the vector v provided as argument filled with the selected points.
RAFF.generate_noisy_data! — Function.generate_noisy_data!(data::AbstractArray{Float64, 2},
v::Vector{Int}, model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n),
std::Float64=200.0, out_times::Float64=7.0)Random generate a fitting one-dimensional data problem, storing the data in matrix data and the outliers in vector v.
This function receives a model(x, θ) function, the number of parameters n, the number of points np to be generated and the number of trusted points p.
If the n-dimensional vector θSol is provided, then the exact solution will not be random generated. The interval [xMin, xMax] (deprecated) or x_interval for generating the values to evaluate model can also be provided.
It returns a tuple (data, θSol, outliers) where
data: (npx3) array, where each row containsxandmodel(x, θSol).θSol:n-dimensional vector with the exact solution.outliers: the outliers of this data set
RAFF.generate_noisy_data — Function.generate_noisy_data(model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n),
std::Float64=200.0, out_times::Float64=7.0)
generate_noisy_data(model::Function, n::Int, np::Int, p::Int,
x_interval::Tuple{Float64, Float64})
generate_noisy_data(model::Function, n::Int, np::Int, p::Int,
θSol::Vector{Float64}, x_interval::Tuple{Float64, Float64})Random generate a fitting one-dimensional data problem.
This function receives a model(x, θ) function, the number of parameters n, the number of points np to be generated and the number of trusted points p.
If the n-dimensional vector θSol is provided, then the exact solution will not be random generated. The interval [xMin, xMax] (deprecated) or x_interval for generating the values to evaluate model can also be provided.
It returns a tuple (data, θSol, outliers) where
data: (npx3) array, where each row containsxandmodel(x, θSol).θSol:n-dimensional vector with the exact solution.outliers: the outliers of this data set
RAFF.generate_clustered_noisy_data! — Function.generate_clustered_noisy_data!(data::Array{Float64, 2},
v::Vector{Int}, model::Function, n::Int, np::Int, p::Int,
x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)Generate a test set with clustered outliers. This version overwrites the content of (np x 3) matrix data and vector v with integer indices to the position of outliers in data.
The arguments and optional arguments are the same for generate_noisy_data!, with exception of tuple cluster_interval which is the interval to generate the clustered outliers.
It returns a tuple (data, θSol, outliers) where
data: (npx3) array, where each row containsxandmodel(x, θSol). The same array given as argumentθSol:n-dimensional vector with the exact solution.outliers: the outliers of this data set. The same vector given as argument.
RAFF.generate_clustered_noisy_data — Function.generate_clustered_noisy_data(model::Function, n::Int, np::Int,
p::Int, x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)
generate_clustered_noisy_data(model::Function, n::Int,
np::Int, p::Int, θSol::Vector{Float64},
x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)Generate a test set with clustered outliers.
The arguments and optional arguments are the same for generate_noisy_data!, with exception of tuple cluster_interval which is the interval to generate the clustered outliers.
It returns a tuple (data, θSol, outliers) where
data: (npx3) array, where each row containsxandmodel(x, θSol). The same array given as argumentθSol:n-dimensional vector with the exact solution.outliers: the outliers of this data set. The same vector given as argument.
RAFF.generate_circle — Function.generate_circle(dat_filename::String, np::Int, p::Int;
std::Float64=0.1, θSol::Vector{Float64}=1.0*randn(Float64, 3),
outTimes::Float64=3.0, interval=(rand(i)*2.0*π for i = 1:np))Generate perturbed points in a circle given by θSol and save to dat_filename in RAFF format. Return the np x 4 matrix with data (the 4th column is 0 if the point is "correct") and a np - p integer vector containing the points selected to be outliers.
dat_filenameis a String with the name of the file to store generated data.npis the number of points to be generated.pis the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std: standard deviation.θSol: true solution, used for generating perturbed points.out_times: deviation for outliers will beout_times * std.interval: any iterable object containingnpnumbers between 0 and 2π.
RAFF.generate_ncircle — Function.generate_ncircle(dat_filename::String,np::Int, p::Int;
std::Float64=0.1, θSol::Vector{Float64}=10.0*randn(Float64, 3),
interval=(rand()*2.0*π for i = 1:np))Generate perturbed points and uniform noise in a square containing the circle given by θSol and save data to dat_filename in RAFF format. Return the np x 4 matrix with data (the 4th column is 0 if the point is "correct") and a np - p integer vector containing the points selected to be outliers.
dat_filenameis a String with the name of the file to store generated data.npis the number of points to be generated.pis the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std: standard deviation.θSol: true solution, used for generating perturbed points.interval: any iterable object containingnpnumbers between 0 and 2π.leftd: number of times the radius of the circle that will be used for computing the lower left corner of the square for generation of the random noiselngth: number of times the radius of the circle that will be used for computing the side of the square for generation of the random noise
RAFF.generate_image_circle — Function.generate_image_circle(dat_filename::String, w::Int, h::Int,
np::Int, p::Int; std=0.1,
θSol::Vector{Float64}=10.0*randn(Float64, 3),
interval=(rand()*2.0*π for i = 1:p), thck::Int=2,
funcsize=min(w, h))Generate perturbed points and uniform noise in a wxh image containing the circle given by θSol and save data to dat_filename in RAFF format. Return the 0-1 matrix representing the black and white image generate.
dat_filenameis a String with the name of the file to store generated data.wandhare the dimensions of the imagenpis the number of points to be generated.pis the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std: standard deviation.θSol: true solution, used for generating perturbed points.interval: any iterable object containingnpnumbers between 0 and 2π.thck: thickness of the point in the imagefuncsize: size (in pixels) that the function will use in the image.
RAFF.generate_image_noisy_data — Function.function generate_image_noisy_data(dat_filename::String,
w::Int, h::Int, model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Number, Number}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n), std=2,
thck::Int=2, funcsize=min(w, h))Create a file dat_filename with data information to detect model in a wxh image containing random uniform noise. Attention: this function only works with 1-dimensional models.
Return a black and white matrix representing the image.
The parameters are
dat_filename: name of the file to save datawandh: dimension of the imagemodel: real-valued model given by a functionmodel(x, θ)n: dimension of the parameters of the modelnp: number of points to be generatedp: number of trusted points that will define the correct points in the model
The function also accepts the following optional arguments:
x_interval: tuple representing the interval for thexvariableθSol: vector with the 'exact' parameters of the solutionstd: error that will be added to the simulated 'correct' pointsthck: thickness of the point in the imagefuncsize: size (in pixels) that the function will use in the image.
RAFF.model_list — Constant.This dictionary represents the list of models used in the generation of random tests. Return the tuple (n, model, model_str), where
nis the number of parameters of the modelmodelis the model of the formm(x, θ), wherexare the variables andθare the parametersmodel_stris the string representing the model, used to build random generated problems
Output type
RAFF.RAFFOutput — Type.This type defines the output file for the RAFF algorithm.
RAFFOutput(status::Int, solution::Vector{Float64}, iter::Int,
p::Int, f::Float64, nf::Int, nj::Int, outliers::Vector{Int})where
status: is 1 if converged and 0 if notsolution: vector with the parameters of the modeliter: number of iterations up to convergencep: number of trusted pointsf: the residual valuenf: number of function evaluationsnj: number of Jacobian evaluationsoutliers: the possible outliers detected by the method, for the givenpRAFFOutput()
Creates a null version of output, equivalent to RAFFOutput(0, [], -1, 0, Inf, -1, -1, [])
RAFFOuput(p::Int)
RAFFOuput(sol::Vector{Float64}, p::Int)Creates a null version of output for the given p and a null version with the given solution, respectively.