Summary
There are four main RAFF structures:
- Main functions: directly called by user;
- Auxiliary functions: used like internal auxiliary functions;
- Random generation: used to generate random sets of data, in order to test
RAFF
- Output type: type defined to manipulate output information.
Main functions
RAFF.lmlovo
— Function.lmlovo(model::Function [, θ::Vector{Float64} = zeros(n)], data::Array{Float64, 2},
n::Int, p::Int [; kwargs...])
lmlovo(model::Function, gmodel!::Function [, θ::Vector{Float64} = zeros(n)],
data::Array{Float64,2}, n::Int, p::Int [; MAXITER::Int=200,
ε::Float64=10.0^-4])
Fit the n
-parameter model model
to the data given by matrix data
. The strategy is based on the LOVO function, which means that only p
(0 < p
<= rows of data
) points are trusted. The Levenberg-Marquardt algorithm is implemented in this version.
Matriz data
is the data to be fit. This matrix should be in the form
x11 x12 ... x1N y1
x21 x22 ... x2N y2
:
where N
is the dimension of the argument of the model (i.e. dimension of x
).
If θ
is provided, then it is used as the starting point.
The signature of function model
should be given by
model(x::Union{Vector{Float64}, SubArray}, θ::Vector{Float64})
where x
are the variables and θ
is a n
-dimensional vector of parameters. If the gradient of the model gmodel!
gmodel! = (g::SubArray, x::Union{Vector{Float64}, SubArray},
θ::Vector{Float64})
is not provided, then the function ForwardDiff.gradient! is called to compute it. Note that this choice has an impact in the computational performance of the algorithm. In addition, if ForwardDiff.jl
is being used, then one MUST remove the signature of vector θ
from function model
.
The optional arguments are
MAXITER
: maximum number of iterationsε
: tolerance for the gradient of the function
Returns a RAFFOutput
object.
RAFF.gnlslovo
— Function.gnlslovo(model, gmodel!, θ, data::Array{T, 2}, n, p;
ε::Number=1.0e-4, MAXITER=400, αls=2.0, dinc=2.0,
MAXLSITER=100) where {T<:Float64}
gnlslovo(model, θ::Vector{Float64}, data::Array{Float64,2},
n::Int, p::Int; kwargs...)
gnlslovo(model, gmodel!, data::Array{Float64,2}, n::Int,
p::Int; kwargs...)
gnlslovo(model, data::Array{Float64,2}, n::Int, p::Int; kwargs...)
LOVO Gauss-Newton with line-search described in
R. Andreani, G. Cesar, R. M. Cesar-Jr., J. M. Martínez, and P. J. S. Silva, “Efficient curve detection using a {Gauss-Newton} method with applications in agriculture,” in Proc. 1st International Workshop on Computer Vision Applications for Developing Regions in Conjunction with ICCV 2007-CVDR-ICCV07, 2007.
Fit the n
-parameter model model
to the data given by matrix data
. The strategy is based on the LOVO function, which means that only p
(0 < p
<= rows of data
) points are trusted.
Matriz data
is the data to be fit. This matrix should be in the form
x11 x12 ... x1N y1
x21 x22 ... x2N y2
:
where N
is the dimension of the argument of the model (i.e. dimension of x
).
If θ
is provided, then it is used as the starting point.
The signature of function model
should be given by
model(x::Union{Vector{Float64}, SubArray}, θ::Vector{Float64})
where x
are the variables and θ
is a n
-dimensional vector of parameters. If the gradient of the model gmodel!
gmodel! = (g::SubArray, x::Union{Vector{Float64}, SubArray},
θ::Vector{Float64})
is not provided, then the function ForwardDiff.gradient! is called to compute it. Note that this choice has an impact in the computational performance of the algorithm. In addition, if ForwardDiff.jl
is being used, then one MUST remove the signature of vector θ
from function model
.
The optional arguments are
MAXITER
: maximum number of iterationsε
: tolerance for the gradient of the functionαls
: number >1 to increase/decrease the parametert
in line-searchdinc
: number >1 to increase the diagonal of the J^T J matrix in order to escape from singularityMAXLSITER
: maximum number of Linear System increases in diagonal before exiting. Also defines the maximum number of Line Search trials to satisfy Armijo (but does not exit in such case)
Returns a RAFFOutput
object.
RAFF.raff
— Function.raff(model::Function, data::Array{Float64, 2}, n::Int; kwargs...)
raff(model::Function, gmodel!::Function, data::Array{Float64, 2},
n::Int; MAXMS::Int=1, SEEDMS::Int=123456789,
initguess::Vector{Float64}=zeros(Float64, n),
noutliers::Int=-1, ftrusted::Union{Float64,
Tuple{Float64, Float64}}=0.5,
inner_solver::Function=lmlovo, inner_solver_params...)
Robust Algebric Fitting Function (RAFF) algorithm. This function uses a voting system to automatically find the number of trusted data points to fit the model
.
model
: function to fit data. Its signature should be given bymodel(x, θ)
where
x
is the multidimensional argument andθ
is then
-dimensional vector of parametersgmodel!
: gradient of the model function. Its signature should be given bygmodel!(g, x, θ)
where
x
is the multidimensional argument,θ
is then
-dimensional vector of parameters and the gradient is written ing
.data
: data to be fit. This matrix should be in the formx11 x12 ... x1N y1 x21 x22 ... x2N y2 :
where
N
is the dimension of the argument of the model (i.e. dimension ofx
).n
: dimension of the parameter vector in the model function
The optional arguments are
MAXMS
: number of multistart points to be usedSEEDMS
: integer seed for random multistart pointsinitialguess
: a good guess for the starting point and for generating random points in the multistart strategynoutliers
: integer describing the maximum expected number of outliers. The default is half. Deprecated.ftrusted
: float describing the minimum expected percentage of trusted points. The default is half (0.5). Can also be a Tuple of the form(fmin, fmax)
percentages of trusted points.inner_solver
: solver to be used for the least square problems. By default, useslmlovo
. This function has the following mandatory parametersinner_solver(model, gmodel!, θ, data, n, p; inner_solver_params...) = RAFFOutput
inner_solver_params...
: the remaining parameters will be sent as optional arguments to theinner_solver
Returns a RAFFOutput
object with the best parameter found.
RAFF.praff
— Function.praff(model::Function, data::Array{Float64, 2}, n::Int; kwargs...)
praff(model::Function, gmodel!::Function, data::Array{Float64, 2},
n::Int; MAXMS::Int=1, SEEDMS::Int=123456789, batches::Int=1,
initguess::Vector{Float64}=zeros(Float64, n),
noutliers::Int=-1, ftrusted::Union{Float64,
Tuple{Float64, Float64}}=0.5,
inner_solver::Function=lmlovo, inner_solver_params...)
Multicore distributed version of RAFF. See the description of the raff
function for the main (non-optional) arguments. All the communication is performed by channels.
This function uses all available local workers to run RAFF algorithm. Note that this function does not use Tasks, so all the parallelism is based on the Distributed package.
The optional arguments are
MAXMS
: number of multistart points to be usedSEEDMS
: integer seed for random multistart pointsbatches
: size of batches to be send to each workerinitguess
: starting point to be used in the multistart procedurenoutliers
: integer describing the maximum expected number of outliers. The default is half. Deprecated.ftrusted
: float describing the minimum expected percentage of trusted points. The default is half (0.5). Can also be a Tuple of the form(fmin, fmax)
percentages of trusted points.inner_solver
: solver to be used for the least square problems. By default, useslmlovo
. This function has the following mandatory parametersinner_solver(model, gmodel!, θ, data, n, p; inner_solver_params...) = RAFFOutput
inner_solver_params...
: the remaining parameters will be sent as optional arguments to theinner_solver
Returns a RAFFOutput
object containing the solution.
RAFF.set_raff_output_level
— Function.RAFF.set_lm_output_level
— Function.Auxiliary functions
RAFF.voting_strategy
RAFF.eliminate_local_min!
RAFF.sort_fun!
RAFF.update_best
RAFF.consume_tqueue
RAFF.check_and_close
RAFF.check_ftrusted
RAFF.interval_rand!
Random generation
RAFF.generate_test_problems
— Function.generate_test_problems(datFilename::String, solFilename::String,
model::Function, modelStr::String, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(n), std::Float64=200.0,
out_times::Float64=7.0)
generate_test_problems(datFilename::String, solFilename::String,
model::Function, modelStr::String, n::Int, np::Int, p::Int,
cluster_interval::Tuple{Float64, Float64};
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(n), std::Float64=200.0,
out_times::Float64=7.0)
Generate random data files for testing fitting problems.
datFilename
andsolFilename
are strings with the name of the files for storing the random data and solution, respectively.model
is the model function andmodelStr
is a string representing this model function, e.g.model = (x, θ) -> θ[1] * x[1] + θ[2] modelStr = "(x, θ) -> θ[1] * x[1] + θ[2]"
where vector
θ
represents the parameters (to be found) of the model and vectorx
are the variables of the model.n
is the number of parametersnp
is the number of points to be generated.p
is the number of trusted points to be used in the LOVO approach.
If cluster_interval
is provided, then generates outliers only in this interval.
Additional parameters:
xMin
,xMax
: interval for generating points in one dimensional tests Deprecatedx_interval
: interval for generating points in one dimensional testsθSol
: true solution, used for generating perturbed pointsstd
: standard deviationout_times
: deviation for outliers will beout_times * std
.
RAFF.get_unique_random_points
— Function.get_unique_random_points(np::Int, npp::Int)
Choose exactly npp
unique random points from a set containing np
points. This function is similar to rand(vector)
, but does not allow repetitions.
If npp
< np
, returns all the np
points. Note that this function is not very memory efficient, since the process of selecting unique elements involves creating several temporary vectors.
Return a vector with the selected points.
RAFF.get_unique_random_points!
— Function.get_unique_random_points!(v::Vector{Int}, np::Int, npp::Int)
Choose exactly npp
unique random points from a set containing np
points. This function is similar to rand(vector)
, but does not allow repetitions.
If npp
< np
, returns all the np
points. Note that this function is not very memory efficient, since the process of selecting unique elements involves creating several temporary vectors.
Return the vector v
provided as argument filled with the selected points.
RAFF.generate_noisy_data!
— Function.generate_noisy_data!(data::AbstractArray{Float64, 2},
v::Vector{Int}, model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n),
std::Float64=200.0, out_times::Float64=7.0)
Random generate a fitting one-dimensional data problem, storing the data in matrix data
and the outliers in vector v
.
This function receives a model(x, θ)
function, the number of parameters n
, the number of points np
to be generated and the number of trusted points p
.
If the n
-dimensional vector θSol
is provided, then the exact solution will not be random generated. The interval [xMin, xMax]
(deprecated) or x_interval
for generating the values to evaluate model
can also be provided.
It returns a tuple (data, θSol, outliers)
where
data
: (np
x3
) array, where each row containsx
andmodel(x, θSol)
.θSol
:n
-dimensional vector with the exact solution.outliers
: the outliers of this data set
RAFF.generate_noisy_data
— Function.generate_noisy_data(model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Float64, Float64}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n),
std::Float64=200.0, out_times::Float64=7.0)
generate_noisy_data(model::Function, n::Int, np::Int, p::Int,
x_interval::Tuple{Float64, Float64})
generate_noisy_data(model::Function, n::Int, np::Int, p::Int,
θSol::Vector{Float64}, x_interval::Tuple{Float64, Float64})
Random generate a fitting one-dimensional data problem.
This function receives a model(x, θ)
function, the number of parameters n
, the number of points np
to be generated and the number of trusted points p
.
If the n
-dimensional vector θSol
is provided, then the exact solution will not be random generated. The interval [xMin, xMax]
(deprecated) or x_interval
for generating the values to evaluate model
can also be provided.
It returns a tuple (data, θSol, outliers)
where
data
: (np
x3
) array, where each row containsx
andmodel(x, θSol)
.θSol
:n
-dimensional vector with the exact solution.outliers
: the outliers of this data set
RAFF.generate_clustered_noisy_data!
— Function.generate_clustered_noisy_data!(data::Array{Float64, 2},
v::Vector{Int}, model::Function, n::Int, np::Int, p::Int,
x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)
Generate a test set with clustered outliers. This version overwrites the content of (np
x 3
) matrix data
and vector v
with integer indices to the position of outliers in data
.
The arguments and optional arguments are the same for generate_noisy_data!
, with exception of tuple cluster_interval
which is the interval to generate the clustered outliers.
It returns a tuple (data, θSol, outliers)
where
data
: (np
x3
) array, where each row containsx
andmodel(x, θSol)
. The same array given as argumentθSol
:n
-dimensional vector with the exact solution.outliers
: the outliers of this data set. The same vector given as argument.
RAFF.generate_clustered_noisy_data
— Function.generate_clustered_noisy_data(model::Function, n::Int, np::Int,
p::Int, x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)
generate_clustered_noisy_data(model::Function, n::Int,
np::Int, p::Int, θSol::Vector{Float64},
x_interval::Tuple{Float64,Float64},
cluster_interval::Tuple{Float64, Float64}; kwargs...)
Generate a test set with clustered outliers.
The arguments and optional arguments are the same for generate_noisy_data!
, with exception of tuple cluster_interval
which is the interval to generate the clustered outliers.
It returns a tuple (data, θSol, outliers)
where
data
: (np
x3
) array, where each row containsx
andmodel(x, θSol)
. The same array given as argumentθSol
:n
-dimensional vector with the exact solution.outliers
: the outliers of this data set. The same vector given as argument.
RAFF.generate_circle
— Function.generate_circle(dat_filename::String, np::Int, p::Int;
std::Float64=0.1, θSol::Vector{Float64}=1.0*randn(Float64, 3),
outTimes::Float64=3.0, interval=(rand(i)*2.0*π for i = 1:np))
Generate perturbed points in a circle given by θSol
and save to dat_filename
in RAFF format. Return the np x 4 matrix with data (the 4th column is 0 if the point is "correct") and a np - p
integer vector containing the points selected to be outliers.
dat_filename
is a String with the name of the file to store generated data.np
is the number of points to be generated.p
is the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std
: standard deviation.θSol
: true solution, used for generating perturbed points.out_times
: deviation for outliers will beout_times * std
.interval
: any iterable object containingnp
numbers between 0 and 2π.
RAFF.generate_ncircle
— Function.generate_ncircle(dat_filename::String,np::Int, p::Int;
std::Float64=0.1, θSol::Vector{Float64}=10.0*randn(Float64, 3),
interval=(rand()*2.0*π for i = 1:np))
Generate perturbed points and uniform noise in a square containing the circle given by θSol
and save data to dat_filename
in RAFF format. Return the np x 4 matrix with data (the 4th column is 0 if the point is "correct") and a np - p
integer vector containing the points selected to be outliers.
dat_filename
is a String with the name of the file to store generated data.np
is the number of points to be generated.p
is the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std
: standard deviation.θSol
: true solution, used for generating perturbed points.interval
: any iterable object containingnp
numbers between 0 and 2π.leftd
: number of times the radius of the circle that will be used for computing the lower left corner of the square for generation of the random noiselngth
: number of times the radius of the circle that will be used for computing the side of the square for generation of the random noise
RAFF.generate_image_circle
— Function.generate_image_circle(dat_filename::String, w::Int, h::Int,
np::Int, p::Int; std=0.1,
θSol::Vector{Float64}=10.0*randn(Float64, 3),
interval=(rand()*2.0*π for i = 1:p), thck::Int=2,
funcsize=min(w, h))
Generate perturbed points and uniform noise in a w
xh
image containing the circle given by θSol
and save data to dat_filename
in RAFF format. Return the 0-1 matrix representing the black and white image generate.
dat_filename
is a String with the name of the file to store generated data.w
andh
are the dimensions of the imagenp
is the number of points to be generated.p
is the number of trusted points to be used in the LOVO approach.
Additional configuration parameters are
std
: standard deviation.θSol
: true solution, used for generating perturbed points.interval
: any iterable object containingnp
numbers between 0 and 2π.thck
: thickness of the point in the imagefuncsize
: size (in pixels) that the function will use in the image.
RAFF.generate_image_noisy_data
— Function.function generate_image_noisy_data(dat_filename::String,
w::Int, h::Int, model::Function, n::Int, np::Int, p::Int;
x_interval::Tuple{Number, Number}=(-10.0, 10.0),
θSol::Vector{Float64}=10.0 * randn(Float64, n), std=2,
thck::Int=2, funcsize=min(w, h))
Create a file dat_filename
with data information to detect model
in a w
xh
image containing random uniform noise. Attention: this function only works with 1
-dimensional models.
Return a black and white matrix representing the image.
The parameters are
dat_filename
: name of the file to save dataw
andh
: dimension of the imagemodel
: real-valued model given by a functionmodel(x, θ)
n
: dimension of the parameters of the modelnp
: number of points to be generatedp
: number of trusted points that will define the correct points in the model
The function also accepts the following optional arguments:
x_interval
: tuple representing the interval for thex
variableθSol
: vector with the 'exact' parameters of the solutionstd
: error that will be added to the simulated 'correct' pointsthck
: thickness of the point in the imagefuncsize
: size (in pixels) that the function will use in the image.
RAFF.model_list
— Constant.This dictionary represents the list of models used in the generation of random tests. Return the tuple (n, model, model_str)
, where
n
is the number of parameters of the modelmodel
is the model of the formm(x, θ)
, wherex
are the variables andθ
are the parametersmodel_str
is the string representing the model, used to build random generated problems
Output type
RAFF.RAFFOutput
— Type.This type defines the output file for the RAFF algorithm.
RAFFOutput(status::Int, solution::Vector{Float64}, iter::Int,
p::Int, f::Float64, nf::Int, nj::Int, outliers::Vector{Int})
where
status
: is 1 if converged and 0 if notsolution
: vector with the parameters of the modeliter
: number of iterations up to convergencep
: number of trusted pointsf
: the residual valuenf
: number of function evaluationsnj
: number of Jacobian evaluationsoutliers
: the possible outliers detected by the method, for the givenp
RAFFOutput()
Creates a null version of output, equivalent to RAFFOutput(0, [], -1, 0, Inf, -1, -1, [])
RAFFOuput(p::Int)
RAFFOuput(sol::Vector{Float64}, p::Int)
Creates a null version of output for the given p
and a null version with the given solution, respectively.